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Abstract - Modernizing legacy computer programs is chal-
lenging. This paper introduces a generalized framework for 
language transformation with three main elements. First, target 
languages are shielded from the transformation process by a 
collection of interfaces such as “create an if statement.” 
Transforming from Delphi is the same whether the target is 
Python, Java, C# or some other language that implements the 
interfaces. Second, the framework ensures synchronization 
between source language grammars and transformation tools, 
so changes to a grammar cannot be made without adjusting the 
impacted tools. This allows large scale transformation projects 
where both the grammars and the tools are under concurrent 
development. Third, source code generation is accomplished by 
adding output formatting annotations to the target language 
grammar. 

Keywords: Legacy modernization, programming language 
transformation. 

 

1 Introduction 
  By some estimates, the global number of computer 
programming languages is about 565 [1], or about 1,500 
including variations [2]. Sources that list the most popular 
programming languages, such as [3], do not include the most 
pervasive business programming language, COBOL. 

Many of these programming languages have been in use for 
many decades, such as COBOL, Fortran, Natural, RPG, PL/I 
and others. They suffer from a shortage of skilled software 
developers, and many applications were built without internet 
security in mind, potentially exposing vulnerabilities. 

New languages are introduced on a regular basis and existing 
languages continue to evolve, but legacy languages rarely 
become extinct. This proliferation of languages and their 
variations is not handled well by existing tools, such as [4] that 
tend to focus on a few specific language pairs, such as COBOL 
to Java [5]. 

 

“There are still hundreds of billions of lines of COBOL code 
in use today by banks, insurance companies and other 
organizations, and COBOL is still used somewhere in a large 
proportion of all business transactions.” [6] 

 

“Some 23 of the world's top 25 retailers, 92 of the top 100 
banks, and the 10 largest insurers all entrust core operations 
to Cobol programs running on IBM mainframes.” [7] 

 
This paper deals with three issues, and introduces a new 
framework to facilitate more efficient, effective software 
modernization. The first issue is choosing a target language. 
We recognize that transformation does not have to utilize all 
the features of each target language. In fact, a relatively small 
set of features must be provided, such as “add a method to a 
class,” and that these features are generally shared by the target 
languages. 

When considering legacy language transformation, the choice 
of target programming languages typically includes Java, C#, 
Python and a few others. Transformation into legacy languages 
like COBOL is specifically not a part of this effort. 

There are many efforts to introduce a common intermediate 
language definition, such as [8], to span multiple source 
languages. This paper only considers an intermediate interface 
for target languages. 

There are also many point-to-point translation systems. 
Stratego/XT [9], for example, supports strategic term rewriting 
to perform transformations. Likewise, RascalMPL [10] has 
tools for term rewriting. Our contention is that the 
expressiveness of rules is well-suited for small transformation 
projects, but does not scale up to thousands of programs in 
dozens of languages. To achieve that scale, we believe that the 
transformation logic is best expressed in a classic 
programming language like Java. 

The second issue is synchronization. In our experience with 
legacy modernization, grammars are continually being 
enhanced. Rarely are perfect grammars available that 
encompass all existing source code. It is normal that small 
adjustments have to be made to accommodate certain language 
patterns. By utilizing the work of [11], we are able to represent 
source grammars in Java code, rather than text files containing 
Backus-Naur Form (BNF) grammars or similar. Likewise, the 
transformation tools are also written in Java, within the same 
environment. With this approach, changes to the grammar will 
be detected directly by the compiler or, more commonly, the 
Integrated Development Environment (IDE). 

The third issue is target language generation. After creating an 
in-memory representation of the new program, it must be 
converted to a text file. In our framework, we add Java anno-



tations1 (such as @NOSPACE, @INDENT, etc.) to the target Program 
Grammar to control word and line spacing, indentation, etc. 
Other systems, such as Ekeko/X [12] also use annotations, but 
we use them mainly for output generation, not for 
transformation logic. 

Our experimental results involve three sets of language 
transformation pairs, all using the same framework. 

 
 BNF to a Program Grammar (in Java) 
 COBOL to Python 
 Delphi to C# 

 
No claim is being made that the transformation process is 
complete for any of these. Transformation is a complex process 
and this paper discusses many of those difficulties, and how to 
help alleviate some of the burden. 

1. Transformation Framework 
A traditional transformation process is described in detail in 
[13]. Here are the steps for our process: 

 
 Using a Program Grammar, parse the source program, 

producing a Program Semantic Tree (PST). A PST is 
similar to an Abstract Syntax Tree (AST), but includes 
some semantic information about each token, such as 
a two-way cross reference between variable defi-
nitions and their references. 

 Read the source program PST and generate a second 
PST in the target language using transformation logic, 
such as Sections 2.1, 2.2, and 2.2.3. This process is 
only aware of the source language; all references to 
the target language are hidden through interfaces. 

 Using a Program Grammar for the target language, 
read the new PST and generate a source file. 

 
The Parser and the Program Generator are language-
independent. The Transformation Engine depends only on the 
source language, not the target language. 

The main benefit of our framework is that the transformation 
process does not have access to the target language, just the 
interface layer. There is also just one grammar for each 
language, whether used for source parsing or target generation. 

1.1. Source Program Grammars 
Figure 1 shows a sample Program Grammar for the “IF” 
statement in COBOL. Additional details are available in [11]. 

The fields in a Token Sequence must appear in order, although 
fields may be optional, as denoted by the @OPT annotation. 

                                                           
1 Java annotations are a form of syntactic metadata that can be 
added to source code. 

Token List means zero or more occurrences. The Program 
Grammar in Figure 1 is equivalent to the BNF version shown 
in Figure 2. 

We have used these Program Grammars to parse many 
thousands of programs, and millions of lines, written in 
COBOL, RPG, Natural, PL/I, C, Java, C#, Python, JavaScript, 
HTML, CSS and others. All Program Grammars will be open-
sourced so they can be used and managed by the community 
(see Section 4.1). 

 
public class COBOL_IfStatement extends TokenSequence 
{ 
  public COBOL_Keyword IF = new COBOL_Keyword("IF"); 
  public COBOL_Expression condition; 
  public @OPT COBOL_Keyword THEN = new COBOL_Keyword("THEN"); 
  public TokenList<COBOL_Statement> thenActions; 
  public @OPT COBOL_Else elseClause; 
  public @OPT COBOL_Keyword ENDIF = new COBOL_Keyword("END-IF"); 
 
  public static class COBOL_Else extends TokenSequence 
  { 
    public COBOL_Keyword ELSE = new COBOL_Keyword("ELSE"); 
    public TokenList<COBOL_Statement> elseActions; 
  } 
}; 

Figure 1. COBOL "IF" Statement Program Grammar 

  COBOL_IfStatement ::= "IF" condition ["THEN"] 
    thenActions [elseClause] ["ENDIF"]; 
  condition ::= COBOL_Expression; 
  thenActions ::= COBOL_Statement*; 
  elseClause ::= "ELSE" elseActions; 
  elseActions ::= COBOL_Statement*; 

Figure 2. COBOL "IF" Statement in BNF 

1.2. Transformation Logic 
Figure 3 shows the logic used to transform one variation of the 
PERFORM verb in COBOL. The logic is specific to COBOL, but 
independent of the variations of COBOL (e.g., some versions 
use fixed columns for labels and comments; some are free-
format). 

 
if (token instanceof COBOL_PerformVarying) 
{ 
  COBOL_PerformVarying varying = (COBOL_PerformVarying) token; 
 
  // Collect all the inline statements 
  ArrayList<Stmt> statements = new ArrayList<Stmt>(); 
  for (COBOL_Statement statement : inline.statements) 
  { 
    AbstractToken oldStatement = statement.getWhich(); 
    Stmt newStatement = trans.transformStatement(oldStatement); 
    statements.add(newStatement); 
  } 
  Stmt action = trans._target.createStatementBlock(statements); 
 
  String loopVar = trans.getFullVariableName(varying.id); 
  Expr initVal = trans.transformExpression(varying.from); 
  Expr incrVal = trans.transformExpression(varying.by); 
  Expr until = trans.transformExpression(varying.until.cond); 
  Expr term = trans._target._createExpression.createNot(until); 
 
  Stmt forStatement = trans._target.createForStatement(loopVar, 
      initVal, term, action, incrVal, varying); 
  return forStatement; 
} 

Figure 3. Transforming “PERFORM” from COBOL 



The Expr (and Stmt) terms are Java generic data types2 that 
represent Java_Expression, CSharp_Expression, etc. depen-
ding on the target language. The trans variable is specific to 
COBOL, while trans._target is specific to the target 
interface layer. 

1.3. Target Interface Layer 
For a language to be a transformation target in this framework, 
there must be classes set up that implement the following six 
interfaces3: Transform Target (the main class), Create 
Program, Create Class, Create Method, Create Statement, and 
Create Expression. 

The total count of methods that must be implemented for each 
language is approximately sixty, as of this writing. Although 
every method must be implemented for each target language, 
the implementations are often very similar. 

 
public interface Create_Class<Cls extends AbstractClass, 
    Meth extends AbstractMethod, Stmt extends AbstractStatement> 
{ 
  public enum CLASS_QUALIFIERS { NONE, OVERRIDES } 
  public AbstractComment addClassComment(Cls cls, String comm); 
  public void addClassData(Cls cls, Stmt dataStmt); 
  public void addMethod(Cls cls, Meth method); 
  public void addConstructor(Cls cls, String className, 
      AbstractExpression[] args); 
  public Cls addInnerClass(PRIVACY privacy, Cls cls, 
      String className, CLASS_QUALIFIERS qual); 
  public void setClassExtends(Cls cls, String extendsClass); 
  public Cls addInnerDataClass(Cls cls, String name, TYPES typ); 
} 

Figure 4. Target Interface for Create Class 

The interface methods shown in Figure 4 (slightly condensed) 
must be implemented for each target language. The use of Java 
generics on the first two lines are crucial for this framework, 
because they retain the strong typing needed for scalability. 
With them, the Java target transformation code can be strongly 
typed, which avoids risky type-casts. 

1.4. Target Program Grammars 
The source Program Grammars and target Program Grammars 
are actually the same grammar, just used in different ways. The 
only significant difference is that the formatting annotations 
are only used when generating program output. 

In Figure 5, the Token Chooser indicates that any one field or 
class instance can be used to satisfy that grammar rule. In this 
example, a statement could be just a semicolon (with a 
@CURIOUS warning), some data, an inner class, an enumeration, 
a statement block in braces, or one of the specified C# 
statements. 

 

                                                           
2 Generics extend Java's type system to allow a type or method 
to operate on objects of various types while providing compile-
time type safety. 

public class CSharp_Statement extends TokenChooser 
{ 
  public @CURIOUS("Extra semicolon") PunctuationSemicolon semi; 
   
  public CSharp_Data data; 
  public CSharp_Class myclass; 
  public CSharp_Enum enumeration; 
   
  public static class CSharp_StmtBlock extends TokenSequence 
  { 
    public @INDENT PunctuationLeftBrace leftBrace; 
    public @OPT TokenList<CSharp_Statement> statements; 
    public @OUTDENT PunctuationRightBrace rightBrace; 
  } 
 
  public CSharp_BreakStatement breakStatement; 
  public CSharp_ContinueStatement continueStatement; 
  public CSharp_CheckedStatement checkedStatement; 
  (etc. for each statement type) 

Figure 5. C# Statement Program Grammar 

The use of @INDENT means to indent after rendering this token 
while @OUTDENT means to un-indent before rendering this 
token. These annotations help make the output program file 
more readable. Additional annotations include @NOSPACE to 
prevent spaces before a token, and @NEWLINE to force a new line 
before a token. 

1.5. Macro Pre-Processing 
Many programming languages support macros and/or include 
files. Although compilers require access to all of the included 
files, our system continues processing even when some of 
those include files are not available. 

In C/C++ this is exemplified by the #define macro capability. 
Our system can pre-process the source file(s) and expand 
macros. Because macros often depend on environment 
settings, macro expansion also allows project-specific controls 
to decide which macros to expand and what initial environment 
settings to use. 

Other languages that utilize this pre-processor include PL/I, 
PHP, CMD (DOS), Delphi, and COBOL. The COBOL copy 
books are especially interesting with the REPLACING clause. 

1.6. Comments 
Many transformation systems either omit comments before 
transformation, or require comments as part of the grammar, in 
every place where they are used. In our system, we take a 
hybrid approach. If the Program Grammar includes comments, 
they are kept in the in-memory representation of the program. 
Otherwise, comments are discarded with a brief notification. 

2. Experiments 
Three distinct transformations are detailed in this paper, 
showing a range of capabilities. The point of this discussion is 
to describe the framework, not to claim that transformation 
from languages like COBOL or Delphi is fully implemented. 

3 An interface in Java is an abstract type that is used to specify 
a behavior that classes must implement. 



2.1. BNF to Program Grammar 
To jump-start a new Program Grammar, it is often useful to use 
an existing BNF-like grammar. 

Program Grammars do not represent terminal nodes (such as 
strings, numbers, punctuation, comments, etc.) in the grammar 
itself, rather, they use Java code that can be shared with 
grammars for other programming languages. For example, 
string literals and numbers are generally similar between 
languages. Furthermore, implementing terminal nodes 
(consider the BNF rules for a floating-point number) in a 
traditional grammar is often complicated and error-prone. 

The following example parses a BNF grammar, transforms it 
to a Program Grammar (in Java), and uses that generated 
Program Grammar to re-parse the original grammar. 

2.1.1. Source EBNF Program 
Extended BNF (EBNF) has several variations. In this case, the 
asterisk * means zero or more of the previous item, a plus sign 
+ means one or more. The vertical bar | means to choose one, 
square brackets [ and ] mean the item is optional. The ::= 
marker is used to define a rule, with semicolon ; indicating the 
end of a rule. 

` 
ebnf-program ::= ebnf-rule*; 
ebnf-rule ::= ebnf-identifier '::=' ebnf-alternation ';'; 
ebnf-alternation ::= ebnf-expression ( '|' ebnf-expression )*; 
ebnf-expression ::= ( literal | ebnf-identifier [ebnf-modifier] | 
    ebnf-optional | ebnf-group )+; 
ebnf-group ::= '(' ebnf-alternation ')' [ebnf-modifier]; 
ebnf-optional ::= '[' ebnf-alternation ']' [ebnf-modifier]; 
ebnf-modifier ::= '+' | '*'; 

Figure 6. Source EBNF Grammar for EBNF 

The two terminal nodes (literal and ebnf-identifier) in 
Figure 6 are defined in Java, and are outside the scope of this 
document. 

 
public static class BNF_ExpressionTerm extends TokenChooser 
{ 
  public BNF_Literal literal; 
 
  public static class BNF_Rulename extends TokenSequence 
  { 
    public BNF_Rule_Reference ref; 
    public @NOSPACE @OPT BNF_PunctuationChoice starOrPlus = 
      new BNF_PunctuationChoice("*", "+"); 
  } 
   
  public static class BNF_Group extends TokenSequence 
  { 
    public PunctuationLeftParen leftParen; 
    public @NOSPACE BNF_Expression expression; 
    public @NOSPACE PunctuationRightParen rightParen; 
    public @NOSPACE @OPT BNF_PunctuationChoice starOrPlus = 
      new BNF_PunctuationChoice("*", "+"); 
  } 
   
  public static class BNF_Optional extends TokenSequence 
  { 
    public PunctuationLeftBracket leftBracket; 
    public @NOSPACE BNF_Expression expression; 
    public @NOSPACE PunctuationRightBracket rightBracket; 
  } 
} 

Figure 7. BNF Program Grammar Snippet 

2.1.2. The BNF Program Grammar 
Figure 7 shows a section of the Program Grammar for BNF. 

It is used to read the EBNF grammar in Figure 6. 

2.1.3. Generated Program Grammar for EBNF 
Figure 8 shows a section of the generated Program Grammar. 
All spaces and newlines are exactly as output from the 
transformation framework. 

 
public static class BNF_Group_2 extends TokenChooser 
{ 
  public BNF_Literal literal; 
 
  public static class BNF_Sequence_1 extends TokenSequence 
  { 
    public BNF_EbnfIdentifier ebnfIdentifier; 
    public @OPT BNF_EbnfModifier ebnfModifier; 
  } 
  public BNF_EbnfOptional ebnfOptional; 
  public BNF_EbnfGroup ebnfGroup; 
} 

Figure 8. Generated Program Grammar Snippet 

Class names are auto-generated in many cases because BNF 
grammars are not as descriptive as Program Grammars. 

Somewhat recursively, the generated Program Grammar is 
used to parse the original BNF grammar again. The code 
snippet in Figure 8 contains almost all of the ebnf-expression 
rule (lines 4-5) in Figure 6. It does not include the + quantifier. 

2.1.4. Re-Parsing the Original EBNF Grammar 
The generated Program Grammar was used to re-parse the 
original EBNF grammar from Figure 6. 

 
 Seq  SLn   SC  ELn   EC  Token Type           Text 
==== ==== ==== ==== ====  ==================== ================= 
   1    1    1    8    0  Grammar_EBNF_bnf      
   2    1    1    8    0  BNF_EbnfProgram       
   3    1    1    8    0  TokenList<>           
   4    1    1    2    0  BNF_EbnfRule          
   5    1    1    1   12  BNF_EbnfIdentifier   ebnf-program 
   6    1   14    1   16  BNF_Punct            ::= 
   7    1   18    1   27  BNF_EbnfAlternation   
   8    1   18    1   27  BNF_EbnfExpression    
   9    1   18    1   27  TokenList<>           
  10    1   18    1   27  BNF_Sequence_1        
  11    1   18    1   26  BNF_EbnfIdentifier   ebnf-rule 
  12    1   27    1   27  BNF_Punct            * 
  13    1   28    1   28  BNF_Punct            ; 

Figure 9. Parse Log from EBNF Re-Parse 

Figure 9 shows a partial log from re-parsing the original EBNF 
grammar using the generated Program Grammar in Figure 8. 

2.2. COBOL to Python (or Java or C#) 
This example shows conversion of a COBOL program to 
Python. The exact same process is used for conversion to Java 
and C#, and the output is exactly the same. 

2.2.1. Source COBOL Program 
The COBOL program in Figure 10 prints 0-0-0 to 9-9-9 twice, 
using two variations on the PERFORM verb, like a mileage 
odometer. 

 



WORKING-STORAGE SECTION. 
01 Dial. 
  02 Hundreds          PIC 99 VALUE ZEROS. 
  02 Tens              PIC 99 VALUE ZEROS. 
  02 Units             PIC 99 VALUE ZEROS. 
 
PROCEDURE DIVISION. 
Begin. 
  DISPLAY "Using an out-of-line Perform". 
  DISPLAY "Start mileage counter simulation 1". 
  PERFORM CountMileage 
    VARYING Hundreds FROM 0 BY 1 UNTIL Hundreds > 9 
      AFTER   Tens FROM 0 BY 1 UNTIL Tens > 9 
      AFTER   Units FROM 0 BY 1 UNTIL Units > 9 
  DISPLAY "End of mileage counter simulation 1." 

Figure 10. Excerpt from MileageCount.CBL 

There are two paragraphs, called Begin and CountMileage 
with the former calling the latter. The primary focus of this 
experiment is converting two different forms of the 
PERFORM verb. 

2.2.2. COBOL Transformation 
The inline version of PERFORM is shown in Figure 11; the 
version that calls a separate paragraph was shown in Figure 3. 

 
if (token instanceof COBOL_PerformUntil) 
{ 
  COBOL_PerformUntil until = (COBOL_PerformUntil) token; 
 
  // Collect all the inline statements 
  ArrayList<Stmt> actions = new ArrayList<Stmt>(); 
  for (COBOL_Statement statement : inline.statements) 
  { 
    Stmt newStatement = trans.transformStatement(statement); 
    actions.add(newStatement); 
  } 
  Expr termCond = trans.transformExpression(until.condition); 
  Expr notTerm = trans._target.createNot(termCond); 
   
  return trans._target.createDoStatement(actions, notTerm); 
} 

Figure 11. Transformation Logic for inline PERFORM 

There are many additional variations on the PERFORM verb in 
COBOL, which are not part of this experiment. 

 
import sys 
class MileageCount: 
  def Begin(self): 
    print "Using an out-of-line Perform" 
    print "Start mileage counter simulation 1" 
    for Dial.Hundreds in range(0, (9) + 1, 1): 
      for Dial.Tens in range(0, (9) + 1, 1): 
        for Dial.Units in range(0, (9) + 1, 1): 
          self.CountMilage() 
    print "End of mileage counter simulation 1." 
    sys.exit(0) 
  def CountMilage(self): 
    Disp.Hunds = Dial.Hundreds 
    Disp.Tens = Dial.Tens 
    Disp.Units = Dial.Units 
    print '{}{}{}{}{}'.format( 
        Disp.Hunds, "-", Disp.Tens, "-", Disp.Units) 

Figure 12. Excerpt of Generated MileageCount.py 

2.2.3. Generated Python Program 
The generated Python program is shown in Figure 12. It was 
generated by parsing the input COBOL program, creating an 
in-memory Program Semantic Tree. Then the COBOL trans-
formation engine was used to create an instance of a target PST 
in memory. The COBOL transformation engine was not aware 
of the target language and was also able to produce both Java 
and C# programs. The target PST was written to a text file, 

using the Java annotations in the Program Grammar to control 
formatting. 

2.3. Delphi to C# (or Java or Python) 
Delphi (originally Pascal) programs are relatively easy to 
transform because the language was designed to be simple and 
efficient [14]. 

2.3.1. Source Delphi Program 
This sample program was written in Pascal before it was 
replaced by Delphi. The program prints the first few prime 
numbers. 

 
Program Prime; 
 
{$I IsPrime.p} 
 
Var 
  I : Integer; 
  N : Integer; 
 
Begin 
  Write('Enter N -->'); 
  ReadLn(N); 
  For I := 1 to N do Begin 
    If IsPrime(I) then Begin 
      WriteLn(I, ' is prime') 
    End 
  End 
End. 

Figure 13. Source Prime.pas 

Note the {$I IsPrime.p} in Figure 13. Our framework has a 
full macro pre-processor to handle this, as described in 
Section 1.5. 

 
Function IsPrime(N : Integer) : Boolean; 
 
Var 
  K : Integer; 
 
Begin 
  If N < 2 Then 
    IsPrime := False 
  Else If N = 2 Then 
    IsPrime := True 
  Else If N mod 2 = 0 Then 
    IsPrime := False 
  Else Begin 
    K := 3; 
    While K * K <= N Do Begin 
      If N mod K = 0 Then Begin 
        K := N; 
        IsPrime := False 
      End; 
      K := K + 2 
    End; 
    IsPrime := True 
  End 
End; 

Figure 14. Source IsPrime.p 

The contents of IsPrime.p, shown in Figure 14, are merged into 
Prime.pas (in memory), and that merged file is used for 
transformation. As shown in the report in Section 3, our 
framework tracks original file names and line numbers. 

2.3.2. Delphi Transformation 
The logic shown in Figure 15 is part of the Delphi expression 
transformation logic. The RELATIONALS enumeration is used to 



shield Delphi from the actual representation of relational 
operators in the target language. 

The left and right sub-expressions are handled on the Delphi 
side, using the trans instance. Each will return an expression 
in the target language. This modularity facilitates the 
development of large scale transformation efforts. 

 
if (which instanceof Delphi_Relational) 
{ 
  Delphi_Relational relational = (Delphi_Relational) which; 
  AbstractToken whichOper = relational.relOp.getWhich(); 
  Expr left = transform(trans, relational.left); 
  Expr right = transform(trans, relational.right); 
 
  RELATIONALS rel; 
  if (whichOper instanceof Delphi_PunctChoice) 
  { 
    String oper = ((Delphi_PunctChoice) whichOper).getValue(); 
    if (oper.equals("<")) rel = RELATIONALS.LT; 
    else if (oper.equals("<=")) rel = RELATIONALS.LE; 
    else if (oper.equals("=")) rel = RELATIONALS.EQ; 
    else if (oper.equals("<>")) rel = RELATIONALS.NE; 
    else if (oper.equals(">=")) rel = RELATIONALS.GE; 
    else if (oper.equals(">")) rel = RELATIONALS.GT; 
    else return null; 
  } 
  else return null; 
 
  return trans._target.createRelational(left, rel, right); 
} 

Figure 15. Transforming Delphi Relational Expressions 

The method called createRelational is target language 
specific and uses the RELATIONALS enumeration to decide how 
best to implement the relational operation. 

2.3.3. Running the Generated C# Program 
This sample takes as input a number and lists the prime 
numbers up to the given number. The functional test 
framework supports simulated input in addition to validating 
output against expected values. 

3. Transformation Reports 
All of the transformation tools in this framework track the 
origin (source file, line and column numbers) of every token. 
This allows the creation of side-by-side reports, where the left 
side of the report has the original source file(s) and the right 
side has the transformed target. Each side has hyperlinks to the 
other side to show how individual statements are mapped. 

Figure 16 shows a portion of a side-by-side report from Section 
2.3.2. On the left side are the two source files (Prime.pas and 
IsPrime.p) and on the right side is the generated Prime.java. As 
a developer moves the mouse over the html report, the 
corresponding lines are highlighted. The lines are also 
hyperlinked to each other. 

 

 
Figure 16. Sample Side-by-Side Report 

4. Future Work 
Programming language transformation is a challenging task. 
Expecting to solve it perfectly with automation is unrealistic. 
We are trying to provide a framework upon which a high level 
of automation can be achieved. 

4.1. Open Source 
All Program Grammars and transformation tools will be open 
sourced. It is unsustainable to expect any one group of 
developers to maintain all languages, and all transformation 
logic. The core parser using Program Grammars has been 
patented. 

4.2. Dataflow Analysis 
Data flow analysis and Control flow analysis [15] are inter-
connected. Following data and control flow across different 
programs is especially challenging. We are actively 
researching data flow analysis when data goes into a file or 
database in one program and back out in another program, 
often written in a different programming language. 

We are also looking at end-to-end data flow from what is typed 
into a web screen, to what shows up on another web screen or 
report. 

4.3. Abstract Data Types & Dynamic Analysis 
Abstract Data Types [16] are fairly well defined but present 
some interesting issues when dealing with legacy languages. 
COBOL, for example, has a picture XX string that is limited to 
two characters. COBOL programmers often rely on automatic 
truncation into that string. In a modern language, there are 
several different ways to transform this string, depending on 
whether or not automatic truncation ever happens. 

We are working on integrating dynamic analysis into our 
framework so we can collect run-time metrics on how often 
events occur, based on some test set. If the test set mirrors the 
production system closely enough, then transformation 
decisions can be automated. 



5. Conclusions 
Our first goal for this experiment was to transform several 
different source programs written in different languages, into 
various target languages. Specifically, the transformation logic 
was kept separate from the choice of target language. This was 
successfully demonstrated on three different examples. 

Because the Program Grammars are expressed in Java, and the 
transformation logic is also expressed in Java, any changes 
made to the grammars will be immediately detected by the Java 
compiler. This has satisfied our second goal of 
synchronization. 

Our third goal was to use existing Program Grammars for 
writing the generated program to a text file. This was achieved 
with annotations that are used by the program generator, but 
are ignored by the parser. 

It is our hope and intention that these tools achieve success by 
open-sourcing them. Programming language transformation 
has not been fully “solved” by the community. As the existing 
software base ages, it will be harder and harder to migrate 
legacy applications. Building shiny new applications is fun, but 
businesses rely on the logic embedded in existing application 
programs. 
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