
Improving Programming Language Transformation

Steven A. O’Hara
Eagle Legacy Modernization, LLC, Austin, Texas, USA

Abstract - Modernizing legacy computer programs is chal-
lenging. This paper introduces a generalized framework for
language transformation with three main elements. First, target
languages are shielded from the transformation process by a
collection of interfaces such as “create an if statement.”
Transforming from Delphi is the same whether the target is
Python, Java, C# or some other language that implements the
interfaces. Second, the framework ensures synchronization
between source language grammars and transformation tools,
so changes to a grammar cannot be made without adjusting the
impacted tools. This allows large scale transformation projects
where both the grammars and the tools are under concurrent
development. Third, source code generation is accomplished by
adding output formatting annotations to the target language
grammar.

Keywords: Legacy modernization, programming language
transformation.

1 Introduction
 By some estimates, the global number of computer
programming languages is about 565 [1], or about 1,500
including variations [2]. Sources that list the most popular
programming languages, such as [3], do not include the most
pervasive business programming language, COBOL.

Many of these programming languages have been in use for
many decades, such as COBOL, Fortran, Natural, RPG, PL/I
and others. They suffer from a shortage of skilled software
developers, and many applications were built without internet
security in mind, potentially exposing vulnerabilities.

New languages are introduced on a regular basis and existing
languages continue to evolve, but legacy languages rarely
become extinct. This proliferation of languages and their
variations is not handled well by existing tools, such as [4] that
tend to focus on a few specific language pairs, such as COBOL
to Java [5].

“There are still hundreds of billions of lines of COBOL code
in use today by banks, insurance companies and other
organizations, and COBOL is still used somewhere in a large
proportion of all business transactions.” [6]

“Some 23 of the world's top 25 retailers, 92 of the top 100
banks, and the 10 largest insurers all entrust core operations
to Cobol programs running on IBM mainframes.” [7]

This paper deals with three issues, and introduces a new
framework to facilitate more efficient, effective software
modernization. The first issue is choosing a target language.
We recognize that transformation does not have to utilize all
the features of each target language. In fact, a relatively small
set of features must be provided, such as “add a method to a
class,” and that these features are generally shared by the target
languages.

When considering legacy language transformation, the choice
of target programming languages typically includes Java, C#,
Python and a few others. Transformation into legacy languages
like COBOL is specifically not a part of this effort.

There are many efforts to introduce a common intermediate
language definition, such as [8], to span multiple source
languages. This paper only considers an intermediate interface
for target languages.

There are also many point-to-point translation systems.
Stratego/XT [9], for example, supports strategic term rewriting
to perform transformations. Likewise, RascalMPL [10] has
tools for term rewriting. Our contention is that the
expressiveness of rules is well-suited for small transformation
projects, but does not scale up to thousands of programs in
dozens of languages. To achieve that scale, we believe that the
transformation logic is best expressed in a classic
programming language like Java.

The second issue is synchronization. In our experience with
legacy modernization, grammars are continually being
enhanced. Rarely are perfect grammars available that
encompass all existing source code. It is normal that small
adjustments have to be made to accommodate certain language
patterns. By utilizing the work of [11], we are able to represent
source grammars in Java code, rather than text files containing
Backus-Naur Form (BNF) grammars or similar. Likewise, the
transformation tools are also written in Java, within the same
environment. With this approach, changes to the grammar will
be detected directly by the compiler or, more commonly, the
Integrated Development Environment (IDE).

The third issue is target language generation. After creating an
in-memory representation of the new program, it must be
converted to a text file. In our framework, we add Java anno-

tations1 (such as @NOSPACE, @INDENT, etc.) to the target Program
Grammar to control word and line spacing, indentation, etc.
Other systems, such as Ekeko/X [12] also use annotations, but
we use them mainly for output generation, not for
transformation logic.

Our experimental results involve three sets of language
transformation pairs, all using the same framework.

 BNF to a Program Grammar (in Java)
 COBOL to Python
 Delphi to C#

No claim is being made that the transformation process is
complete for any of these. Transformation is a complex process
and this paper discusses many of those difficulties, and how to
help alleviate some of the burden.

1. Transformation Framework
A traditional transformation process is described in detail in
[13]. Here are the steps for our process:

 Using a Program Grammar, parse the source program,

producing a Program Semantic Tree (PST). A PST is
similar to an Abstract Syntax Tree (AST), but includes
some semantic information about each token, such as
a two-way cross reference between variable defi-
nitions and their references.

 Read the source program PST and generate a second
PST in the target language using transformation logic,
such as Sections 2.1, 2.2, and 2.2.3. This process is
only aware of the source language; all references to
the target language are hidden through interfaces.

 Using a Program Grammar for the target language,
read the new PST and generate a source file.

The Parser and the Program Generator are language-
independent. The Transformation Engine depends only on the
source language, not the target language.

The main benefit of our framework is that the transformation
process does not have access to the target language, just the
interface layer. There is also just one grammar for each
language, whether used for source parsing or target generation.

1.1. Source Program Grammars
Figure 1 shows a sample Program Grammar for the “IF”
statement in COBOL. Additional details are available in [11].

The fields in a Token Sequence must appear in order, although
fields may be optional, as denoted by the @OPT annotation.

1 Java annotations are a form of syntactic metadata that can be
added to source code.

Token List means zero or more occurrences. The Program
Grammar in Figure 1 is equivalent to the BNF version shown
in Figure 2.

We have used these Program Grammars to parse many
thousands of programs, and millions of lines, written in
COBOL, RPG, Natural, PL/I, C, Java, C#, Python, JavaScript,
HTML, CSS and others. All Program Grammars will be open-
sourced so they can be used and managed by the community
(see Section 4.1).

public class COBOL_IfStatement extends TokenSequence
{
 public COBOL_Keyword IF = new COBOL_Keyword("IF");
 public COBOL_Expression condition;
 public @OPT COBOL_Keyword THEN = new COBOL_Keyword("THEN");
 public TokenList<COBOL_Statement> thenActions;
 public @OPT COBOL_Else elseClause;
 public @OPT COBOL_Keyword ENDIF = new COBOL_Keyword("END-IF");

 public static class COBOL_Else extends TokenSequence
 {
 public COBOL_Keyword ELSE = new COBOL_Keyword("ELSE");
 public TokenList<COBOL_Statement> elseActions;
 }
};

Figure 1. COBOL "IF" Statement Program Grammar

 COBOL_IfStatement ::= "IF" condition ["THEN"]
 thenActions [elseClause] ["ENDIF"];
 condition ::= COBOL_Expression;
 thenActions ::= COBOL_Statement*;
 elseClause ::= "ELSE" elseActions;
 elseActions ::= COBOL_Statement*;

Figure 2. COBOL "IF" Statement in BNF

1.2. Transformation Logic
Figure 3 shows the logic used to transform one variation of the
PERFORM verb in COBOL. The logic is specific to COBOL, but
independent of the variations of COBOL (e.g., some versions
use fixed columns for labels and comments; some are free-
format).

if (token instanceof COBOL_PerformVarying)
{
 COBOL_PerformVarying varying = (COBOL_PerformVarying) token;

 // Collect all the inline statements
 ArrayList<Stmt> statements = new ArrayList<Stmt>();
 for (COBOL_Statement statement : inline.statements)
 {
 AbstractToken oldStatement = statement.getWhich();
 Stmt newStatement = trans.transformStatement(oldStatement);
 statements.add(newStatement);
 }
 Stmt action = trans._target.createStatementBlock(statements);

 String loopVar = trans.getFullVariableName(varying.id);
 Expr initVal = trans.transformExpression(varying.from);
 Expr incrVal = trans.transformExpression(varying.by);
 Expr until = trans.transformExpression(varying.until.cond);
 Expr term = trans._target._createExpression.createNot(until);

 Stmt forStatement = trans._target.createForStatement(loopVar,
 initVal, term, action, incrVal, varying);
 return forStatement;
}

Figure 3. Transforming “PERFORM” from COBOL

The Expr (and Stmt) terms are Java generic data types2 that
represent Java_Expression, CSharp_Expression, etc. depen-
ding on the target language. The trans variable is specific to
COBOL, while trans._target is specific to the target
interface layer.

1.3. Target Interface Layer
For a language to be a transformation target in this framework,
there must be classes set up that implement the following six
interfaces3: Transform Target (the main class), Create
Program, Create Class, Create Method, Create Statement, and
Create Expression.

The total count of methods that must be implemented for each
language is approximately sixty, as of this writing. Although
every method must be implemented for each target language,
the implementations are often very similar.

public interface Create_Class<Cls extends AbstractClass,
 Meth extends AbstractMethod, Stmt extends AbstractStatement>
{
 public enum CLASS_QUALIFIERS { NONE, OVERRIDES }
 public AbstractComment addClassComment(Cls cls, String comm);
 public void addClassData(Cls cls, Stmt dataStmt);
 public void addMethod(Cls cls, Meth method);
 public void addConstructor(Cls cls, String className,
 AbstractExpression[] args);
 public Cls addInnerClass(PRIVACY privacy, Cls cls,
 String className, CLASS_QUALIFIERS qual);
 public void setClassExtends(Cls cls, String extendsClass);
 public Cls addInnerDataClass(Cls cls, String name, TYPES typ);
}

Figure 4. Target Interface for Create Class

The interface methods shown in Figure 4 (slightly condensed)
must be implemented for each target language. The use of Java
generics on the first two lines are crucial for this framework,
because they retain the strong typing needed for scalability.
With them, the Java target transformation code can be strongly
typed, which avoids risky type-casts.

1.4. Target Program Grammars
The source Program Grammars and target Program Grammars
are actually the same grammar, just used in different ways. The
only significant difference is that the formatting annotations
are only used when generating program output.

In Figure 5, the Token Chooser indicates that any one field or
class instance can be used to satisfy that grammar rule. In this
example, a statement could be just a semicolon (with a
@CURIOUS warning), some data, an inner class, an enumeration,
a statement block in braces, or one of the specified C#
statements.

2 Generics extend Java's type system to allow a type or method
to operate on objects of various types while providing compile-
time type safety.

public class CSharp_Statement extends TokenChooser
{
 public @CURIOUS("Extra semicolon") PunctuationSemicolon semi;

 public CSharp_Data data;
 public CSharp_Class myclass;
 public CSharp_Enum enumeration;

 public static class CSharp_StmtBlock extends TokenSequence
 {
 public @INDENT PunctuationLeftBrace leftBrace;
 public @OPT TokenList<CSharp_Statement> statements;
 public @OUTDENT PunctuationRightBrace rightBrace;
 }

 public CSharp_BreakStatement breakStatement;
 public CSharp_ContinueStatement continueStatement;
 public CSharp_CheckedStatement checkedStatement;
 (etc. for each statement type)

Figure 5. C# Statement Program Grammar

The use of @INDENT means to indent after rendering this token
while @OUTDENT means to un-indent before rendering this
token. These annotations help make the output program file
more readable. Additional annotations include @NOSPACE to
prevent spaces before a token, and @NEWLINE to force a new line
before a token.

1.5. Macro Pre-Processing
Many programming languages support macros and/or include
files. Although compilers require access to all of the included
files, our system continues processing even when some of
those include files are not available.

In C/C++ this is exemplified by the #define macro capability.
Our system can pre-process the source file(s) and expand
macros. Because macros often depend on environment
settings, macro expansion also allows project-specific controls
to decide which macros to expand and what initial environment
settings to use.

Other languages that utilize this pre-processor include PL/I,
PHP, CMD (DOS), Delphi, and COBOL. The COBOL copy
books are especially interesting with the REPLACING clause.

1.6. Comments
Many transformation systems either omit comments before
transformation, or require comments as part of the grammar, in
every place where they are used. In our system, we take a
hybrid approach. If the Program Grammar includes comments,
they are kept in the in-memory representation of the program.
Otherwise, comments are discarded with a brief notification.

2. Experiments
Three distinct transformations are detailed in this paper,
showing a range of capabilities. The point of this discussion is
to describe the framework, not to claim that transformation
from languages like COBOL or Delphi is fully implemented.

3 An interface in Java is an abstract type that is used to specify
a behavior that classes must implement.

2.1. BNF to Program Grammar
To jump-start a new Program Grammar, it is often useful to use
an existing BNF-like grammar.

Program Grammars do not represent terminal nodes (such as
strings, numbers, punctuation, comments, etc.) in the grammar
itself, rather, they use Java code that can be shared with
grammars for other programming languages. For example,
string literals and numbers are generally similar between
languages. Furthermore, implementing terminal nodes
(consider the BNF rules for a floating-point number) in a
traditional grammar is often complicated and error-prone.

The following example parses a BNF grammar, transforms it
to a Program Grammar (in Java), and uses that generated
Program Grammar to re-parse the original grammar.

2.1.1. Source EBNF Program
Extended BNF (EBNF) has several variations. In this case, the
asterisk * means zero or more of the previous item, a plus sign
+ means one or more. The vertical bar | means to choose one,
square brackets [and] mean the item is optional. The ::=
marker is used to define a rule, with semicolon ; indicating the
end of a rule.

`
ebnf-program ::= ebnf-rule*;
ebnf-rule ::= ebnf-identifier '::=' ebnf-alternation ';';
ebnf-alternation ::= ebnf-expression ('|' ebnf-expression)*;
ebnf-expression ::= (literal | ebnf-identifier [ebnf-modifier] |
 ebnf-optional | ebnf-group)+;
ebnf-group ::= '(' ebnf-alternation ')' [ebnf-modifier];
ebnf-optional ::= '[' ebnf-alternation ']' [ebnf-modifier];
ebnf-modifier ::= '+' | '*';

Figure 6. Source EBNF Grammar for EBNF

The two terminal nodes (literal and ebnf-identifier) in
Figure 6 are defined in Java, and are outside the scope of this
document.

public static class BNF_ExpressionTerm extends TokenChooser
{
 public BNF_Literal literal;

 public static class BNF_Rulename extends TokenSequence
 {
 public BNF_Rule_Reference ref;
 public @NOSPACE @OPT BNF_PunctuationChoice starOrPlus =
 new BNF_PunctuationChoice("*", "+");
 }

 public static class BNF_Group extends TokenSequence
 {
 public PunctuationLeftParen leftParen;
 public @NOSPACE BNF_Expression expression;
 public @NOSPACE PunctuationRightParen rightParen;
 public @NOSPACE @OPT BNF_PunctuationChoice starOrPlus =
 new BNF_PunctuationChoice("*", "+");
 }

 public static class BNF_Optional extends TokenSequence
 {
 public PunctuationLeftBracket leftBracket;
 public @NOSPACE BNF_Expression expression;
 public @NOSPACE PunctuationRightBracket rightBracket;
 }
}

Figure 7. BNF Program Grammar Snippet

2.1.2. The BNF Program Grammar
Figure 7 shows a section of the Program Grammar for BNF.

It is used to read the EBNF grammar in Figure 6.

2.1.3. Generated Program Grammar for EBNF
Figure 8 shows a section of the generated Program Grammar.
All spaces and newlines are exactly as output from the
transformation framework.

public static class BNF_Group_2 extends TokenChooser
{
 public BNF_Literal literal;

 public static class BNF_Sequence_1 extends TokenSequence
 {
 public BNF_EbnfIdentifier ebnfIdentifier;
 public @OPT BNF_EbnfModifier ebnfModifier;
 }
 public BNF_EbnfOptional ebnfOptional;
 public BNF_EbnfGroup ebnfGroup;
}

Figure 8. Generated Program Grammar Snippet

Class names are auto-generated in many cases because BNF
grammars are not as descriptive as Program Grammars.

Somewhat recursively, the generated Program Grammar is
used to parse the original BNF grammar again. The code
snippet in Figure 8 contains almost all of the ebnf-expression
rule (lines 4-5) in Figure 6. It does not include the + quantifier.

2.1.4. Re-Parsing the Original EBNF Grammar
The generated Program Grammar was used to re-parse the
original EBNF grammar from Figure 6.

 Seq SLn SC ELn EC Token Type Text
==== ==== ==== ==== ==== ==================== =================
 1 1 1 8 0 Grammar_EBNF_bnf
 2 1 1 8 0 BNF_EbnfProgram
 3 1 1 8 0 TokenList<>
 4 1 1 2 0 BNF_EbnfRule
 5 1 1 1 12 BNF_EbnfIdentifier ebnf-program
 6 1 14 1 16 BNF_Punct ::=
 7 1 18 1 27 BNF_EbnfAlternation
 8 1 18 1 27 BNF_EbnfExpression
 9 1 18 1 27 TokenList<>
 10 1 18 1 27 BNF_Sequence_1
 11 1 18 1 26 BNF_EbnfIdentifier ebnf-rule
 12 1 27 1 27 BNF_Punct *
 13 1 28 1 28 BNF_Punct ;

Figure 9. Parse Log from EBNF Re-Parse

Figure 9 shows a partial log from re-parsing the original EBNF
grammar using the generated Program Grammar in Figure 8.

2.2. COBOL to Python (or Java or C#)
This example shows conversion of a COBOL program to
Python. The exact same process is used for conversion to Java
and C#, and the output is exactly the same.

2.2.1. Source COBOL Program
The COBOL program in Figure 10 prints 0-0-0 to 9-9-9 twice,
using two variations on the PERFORM verb, like a mileage
odometer.

WORKING-STORAGE SECTION.
01 Dial.
 02 Hundreds PIC 99 VALUE ZEROS.
 02 Tens PIC 99 VALUE ZEROS.
 02 Units PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
Begin.
 DISPLAY "Using an out-of-line Perform".
 DISPLAY "Start mileage counter simulation 1".
 PERFORM CountMileage
 VARYING Hundreds FROM 0 BY 1 UNTIL Hundreds > 9
 AFTER Tens FROM 0 BY 1 UNTIL Tens > 9
 AFTER Units FROM 0 BY 1 UNTIL Units > 9
 DISPLAY "End of mileage counter simulation 1."

Figure 10. Excerpt from MileageCount.CBL

There are two paragraphs, called Begin and CountMileage
with the former calling the latter. The primary focus of this
experiment is converting two different forms of the
PERFORM verb.

2.2.2. COBOL Transformation
The inline version of PERFORM is shown in Figure 11; the
version that calls a separate paragraph was shown in Figure 3.

if (token instanceof COBOL_PerformUntil)
{
 COBOL_PerformUntil until = (COBOL_PerformUntil) token;

 // Collect all the inline statements
 ArrayList<Stmt> actions = new ArrayList<Stmt>();
 for (COBOL_Statement statement : inline.statements)
 {
 Stmt newStatement = trans.transformStatement(statement);
 actions.add(newStatement);
 }
 Expr termCond = trans.transformExpression(until.condition);
 Expr notTerm = trans._target.createNot(termCond);

 return trans._target.createDoStatement(actions, notTerm);
}

Figure 11. Transformation Logic for inline PERFORM

There are many additional variations on the PERFORM verb in
COBOL, which are not part of this experiment.

import sys
class MileageCount:
 def Begin(self):
 print "Using an out-of-line Perform"
 print "Start mileage counter simulation 1"
 for Dial.Hundreds in range(0, (9) + 1, 1):
 for Dial.Tens in range(0, (9) + 1, 1):
 for Dial.Units in range(0, (9) + 1, 1):
 self.CountMilage()
 print "End of mileage counter simulation 1."
 sys.exit(0)
 def CountMilage(self):
 Disp.Hunds = Dial.Hundreds
 Disp.Tens = Dial.Tens
 Disp.Units = Dial.Units
 print '{}{}{}{}{}'.format(
 Disp.Hunds, "-", Disp.Tens, "-", Disp.Units)

Figure 12. Excerpt of Generated MileageCount.py

2.2.3. Generated Python Program
The generated Python program is shown in Figure 12. It was
generated by parsing the input COBOL program, creating an
in-memory Program Semantic Tree. Then the COBOL trans-
formation engine was used to create an instance of a target PST
in memory. The COBOL transformation engine was not aware
of the target language and was also able to produce both Java
and C# programs. The target PST was written to a text file,

using the Java annotations in the Program Grammar to control
formatting.

2.3. Delphi to C# (or Java or Python)
Delphi (originally Pascal) programs are relatively easy to
transform because the language was designed to be simple and
efficient [14].

2.3.1. Source Delphi Program
This sample program was written in Pascal before it was
replaced by Delphi. The program prints the first few prime
numbers.

Program Prime;

{$I IsPrime.p}

Var
 I : Integer;
 N : Integer;

Begin
 Write('Enter N -->');
 ReadLn(N);
 For I := 1 to N do Begin
 If IsPrime(I) then Begin
 WriteLn(I, ' is prime')
 End
 End
End.

Figure 13. Source Prime.pas

Note the {$I IsPrime.p} in Figure 13. Our framework has a
full macro pre-processor to handle this, as described in
Section 1.5.

Function IsPrime(N : Integer) : Boolean;

Var
 K : Integer;

Begin
 If N < 2 Then
 IsPrime := False
 Else If N = 2 Then
 IsPrime := True
 Else If N mod 2 = 0 Then
 IsPrime := False
 Else Begin
 K := 3;
 While K * K <= N Do Begin
 If N mod K = 0 Then Begin
 K := N;
 IsPrime := False
 End;
 K := K + 2
 End;
 IsPrime := True
 End
End;

Figure 14. Source IsPrime.p

The contents of IsPrime.p, shown in Figure 14, are merged into
Prime.pas (in memory), and that merged file is used for
transformation. As shown in the report in Section 3, our
framework tracks original file names and line numbers.

2.3.2. Delphi Transformation
The logic shown in Figure 15 is part of the Delphi expression
transformation logic. The RELATIONALS enumeration is used to

shield Delphi from the actual representation of relational
operators in the target language.

The left and right sub-expressions are handled on the Delphi
side, using the trans instance. Each will return an expression
in the target language. This modularity facilitates the
development of large scale transformation efforts.

if (which instanceof Delphi_Relational)
{
 Delphi_Relational relational = (Delphi_Relational) which;
 AbstractToken whichOper = relational.relOp.getWhich();
 Expr left = transform(trans, relational.left);
 Expr right = transform(trans, relational.right);

 RELATIONALS rel;
 if (whichOper instanceof Delphi_PunctChoice)
 {
 String oper = ((Delphi_PunctChoice) whichOper).getValue();
 if (oper.equals("<")) rel = RELATIONALS.LT;
 else if (oper.equals("<=")) rel = RELATIONALS.LE;
 else if (oper.equals("=")) rel = RELATIONALS.EQ;
 else if (oper.equals("<>")) rel = RELATIONALS.NE;
 else if (oper.equals(">=")) rel = RELATIONALS.GE;
 else if (oper.equals(">")) rel = RELATIONALS.GT;
 else return null;
 }
 else return null;

 return trans._target.createRelational(left, rel, right);
}

Figure 15. Transforming Delphi Relational Expressions

The method called createRelational is target language
specific and uses the RELATIONALS enumeration to decide how
best to implement the relational operation.

2.3.3. Running the Generated C# Program
This sample takes as input a number and lists the prime
numbers up to the given number. The functional test
framework supports simulated input in addition to validating
output against expected values.

3. Transformation Reports
All of the transformation tools in this framework track the
origin (source file, line and column numbers) of every token.
This allows the creation of side-by-side reports, where the left
side of the report has the original source file(s) and the right
side has the transformed target. Each side has hyperlinks to the
other side to show how individual statements are mapped.

Figure 16 shows a portion of a side-by-side report from Section
2.3.2. On the left side are the two source files (Prime.pas and
IsPrime.p) and on the right side is the generated Prime.java. As
a developer moves the mouse over the html report, the
corresponding lines are highlighted. The lines are also
hyperlinked to each other.

Figure 16. Sample Side-by-Side Report

4. Future Work
Programming language transformation is a challenging task.
Expecting to solve it perfectly with automation is unrealistic.
We are trying to provide a framework upon which a high level
of automation can be achieved.

4.1. Open Source
All Program Grammars and transformation tools will be open
sourced. It is unsustainable to expect any one group of
developers to maintain all languages, and all transformation
logic. The core parser using Program Grammars has been
patented.

4.2. Dataflow Analysis
Data flow analysis and Control flow analysis [15] are inter-
connected. Following data and control flow across different
programs is especially challenging. We are actively
researching data flow analysis when data goes into a file or
database in one program and back out in another program,
often written in a different programming language.

We are also looking at end-to-end data flow from what is typed
into a web screen, to what shows up on another web screen or
report.

4.3. Abstract Data Types & Dynamic Analysis
Abstract Data Types [16] are fairly well defined but present
some interesting issues when dealing with legacy languages.
COBOL, for example, has a picture XX string that is limited to
two characters. COBOL programmers often rely on automatic
truncation into that string. In a modern language, there are
several different ways to transform this string, depending on
whether or not automatic truncation ever happens.

We are working on integrating dynamic analysis into our
framework so we can collect run-time metrics on how often
events occur, based on some test set. If the test set mirrors the
production system closely enough, then transformation
decisions can be automated.

5. Conclusions
Our first goal for this experiment was to transform several
different source programs written in different languages, into
various target languages. Specifically, the transformation logic
was kept separate from the choice of target language. This was
successfully demonstrated on three different examples.

Because the Program Grammars are expressed in Java, and the
transformation logic is also expressed in Java, any changes
made to the grammars will be immediately detected by the Java
compiler. This has satisfied our second goal of
synchronization.

Our third goal was to use existing Program Grammars for
writing the generated program to a text file. This was achieved
with annotations that are used by the program generator, but
are ignored by the parser.

It is our hope and intention that these tools achieve success by
open-sourcing them. Programming language transformation
has not been fully “solved” by the community. As the existing
software base ages, it will be harder and harder to migrate
legacy applications. Building shiny new applications is fun, but
businesses rely on the logic embedded in existing application
programs.

References

[1] W. Rösler, "The Hello World Collection," April 2017.
[Online]. Available: https://helloworldcollection.github.io/.

[2] O. Schade, G. Scheithauer and S. Scheler, "99 Bottles of Beer,"
May 2017. [Online]. Available: http://www.99-bottles-of-
beer.net/.

[3] S. Cass, "The Top 10 Programming Languages," IEEE
Spectrum, p. 68, July 2014.

[4] "Modern Systems," May 2017. [Online]. Available: http://
modernsystems.com/.

[5] H. M. Sneed, "Migrating from COBOL to Java," in IEEE

International Conference on Software Maintenance (ICSM),
Timisoara, Romania, 2010.

[6] P. Rubens, "Why it’s time to learn COBOL," April 2016.
[Online]. Available: http://www.cio.com/article/3050836/
developer/why-its-time-to-learn-cobol.html.

[7] R. L. Mitchell, "Meet Cobol's hard-core fans," 21 August
2014. [Online]. Available: http://www.computerworld.com/
article/2491375/enterprise-applications/meet-cobols-hard-
core-fans.html.

[8] "Knowledge Discovery Metamodel," May 2017. [Online].
Available: http://www.omg.org/technology/kdm/.

[9] M. Bravenboer, K. T. Kalleberg, R. Vermaas and E. Visser,
"Stratego/XT 0.17. A language and toolset for program
transformation," Science of Computer Programming 72, pp.
52-70, 2008.

[10] P. Klint, T. van der Storm and J. Vinju, "EASY Meta-
programming with Rascal," in Generative and Trans-
formational Techniques in Software Engineering III, Berlin,
Springer-Verlag, 2011, pp. 222-289.

[11] S. A. O'Hara, "Programmars: A Revolution in Computer
Language Parsing," in SERP ’15: International Conference on
Software Engineering Research and Practice, Las Vegas, NV,
2015.

[12] T. Molderez and C. De Roover, "Automated Generalization
and Refinement of Code Templates with EKEKO/X,"
Software Languages Lab, Vrije Universiteit, Victoria, BC,
Canada, 2014.

[13] J. R. Cordy, "The TXL source transformation language,"
Science of Computer Programming, pp. 190-210, 2006.

[14] N. Wirth, "The design of a pascal compiler," Software:
Practice and Experience, pp. 309-333, 1971.

[15] O. Shivers, Control-Flow Analysis of Higher-Order Lan-
guages, Pittsburgh, PA: School of Computer Science,
Carnegie Mellon University, 1991.

[16] N. Dale and H. M. Walker, Abstract Data Types: Speci-
fications, Implementations, and Applications, Burlington,
MA: Jones & Bartlett Learning, 1996.

