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Abstract - This paper presents a revolutionary way to parse 
computer programming languages without a traditional 
grammar. The motivation behind this approach is to 
dramatically increase scalability. The intention is to be able 
to parse and analyze billions of lines of code written in 
hundreds of programming languages. To achieve that goal, it 
is advantageous to have sharable, open-source, modular ways 
for defining the syntax and semantics of programming 
languages. The new parsing technique replaces a traditional 
grammar with a computer program, referred to as a 
Programmar (short for program and grammar). All the basic 
operations in BNF (sequencing, alternation, optional terms, 
repeating and grouping) are supported, and the Java code is 
both sharable and modular. This parsing approach enables 
dozens or even hundreds of developers to work on computer 
program analysis concurrently, while avoiding many of the 
consistency issues encountered when building grammars and 
associated code analysis tools. 

1 Introduction 
Businesses around the world today collectively have billions 
of lines of production software written in legacy computer 
languages like COBOL, RPG, PL/I, Fortran and Natural. 
These organizations are highly motivated to modernize their 
software for a number of reasons, including difficulties in 
maintaining old, brittle code [1] and in hiring people with 
legacy skillsets [2]. Unfortunately the modernization process 
is often either prohibitively expensive or produces new 
software of low quality that is difficult to maintain going 
forward into the future [3]. Available modernization tools 
(e.g. [4 to 8]) tend not to be scalable enough to handle large, 
complex software systems that can be comprised of tens of 
millions of lines of code written in multiple programming 
languages. 

For the past several decades, legacy software analysis tools 
have been typified by the type of parser generated by Yet-
Another-Compiler-Compiler (YACC) [9]. Such a parser 
interprets computer program code based on a Context-Free 
Grammar, which is a declarative description of the syntax of a 
specific programming language. This parsing process relies on 
a separate token pre-processor (typically LEX, the Lexical 
Analyzer [10]) and generates an Abstract Syntax Tree (AST). 

Modern programming languages also continue to evolve and 
require solid analysis approaches (e.g. [11 to 13]). For 
example, managing deprecated code often requires detailed 
software analysis similar to application modernization. 
Unfortunately, there are many one-off grammars and tools for 
source code analysis, but no standard or shared tools that 
work well across many programming languages at the same 
time. With our technique, we process languages as disparate 
as Java, HTML, CSS, DOS, XML, COBOL, Natural and RPG 
using a single parser. 

This paper introduces a new parsing technique that embeds all 
required parsing information within a Java program. All of the 
elements needed to describe the computer programming 
language(s) to be parsed are embedded in the Java program as 
fields, classes or methods within Java classes. The focus of 
this work to date is on parsing languages in the context of 
legacy application modernization. 

Grammar rules can be separated into two categories, those 
that depend on other rules (defining non-terminals) and those 
that consume characters in the input stream (terminals). 
Examples of terminals are string literals, comments, numbers, 
keywords, and punctuation. 

In the Programmar approach, Java methods are used for 
parsing terminals, while classes are defined to enable parsing 
of non-terminals. The Programmar API uses Java reflection 
[14] to dynamically infer a grammar while parsing.  

2 Comparison to Old Grammars 
This section describes the relationship between a traditional 
BNF-like grammar and our new Programmar. 

Given a BNF production rule of the form 
<A> ::= <X> <Y> <Z>; 

This is represented in a Programmar as in Figure 1. 

public class A extends TokenSequence { 
public X x; 
public Y y; 
public Z z; 

} 

Figure 1: Sequencing Programmar example 
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Note that the elements are anonymous in the BNF grammar. 
The BNF production rule indicates only that an instance of 
type A can consist of an (unnamed) instance of type X, 
followed by an instance of type Y, and then an instance of 
type Z. In Figure 1, however, the instances are named, which 
means these specific instances can be referred to from 
elsewhere in the Programmar or in associated source code 
analysis programs. This turns out to be extremely valuable 
when analyzing computer source code. 

Given a BNF production rule of the form 
 <A> ::= <X> | <Y> | <Z>; 

This is represented in a Programmar as in Figure 2. 

public class A extends TokenChooser { 
 public X x; 
 public Y y; 
 public Z z; 
} 

Figure 2: Alternation Programmar example 
 

This means that exactly one of the three elements must be 
present to be recognized as an instance of type A. As a 
convenience, anonymous inner classes can be used as well. 

Given a BNF production rule of the form 
 <A> ::= <X> [<Y>] <Z>; 

This is represented in a Programmar as in Figure 3. 

public class A extends TokenSequence { 
 public X x; 
 public @OPT Y y; 
 public Z z; 
} 

Figure 3: Optional item Programmar example 

Given a BNF production rule of the form 
 <A> ::= <X> <Y>* <Z>; 

This is represented in a Programmar as in Figure 4. 

public class A extends TokenSequence { 
 public X x; 
 public @OPT TokenList<Y> y; 
 public Z z; 
} 

Figure 4: Repeating term Programmar example 
 

The ‘+’ BNF notation is handled in a similar manner, without 
the @OPT. 

Java code is provided by the Programmar API to assist 
parsing the most common terminal nodes. For example, string 
literals in various programming languages commonly have a 
number of features such as: 

• Single or double quotes? 

• Are pairs of quotes treated as single quote? 
• What is the escape character, if any? 
• Can a literal span multiple lines? 

Similar routines are available for comments, numbers, 
punctuation, etc. By using Java code for the terminal nodes, 
the parsing speed is greatly improved. In our experience, 
writing a BNF-like grammar for a floating point number or a 
string literal can be challenging and time consuming. 

It is not necessary to use one of the built-in methods for 
parsing terminal nodes. For example, Python has very strict 
rules for indentation. Rather than pre-processing the input 
stream, a Start-of-line terminal node can be used to handle the 
indentation logic correctly. 

3 Motivating Example – Old Grammar 
Consider the two PERFORM statements in Figure 5. 

000160 READ-SHARED-LOCK. 
000170     READ SHARED WITH LOCK. 
000180     IF WS-STATUS = "00" 
000190         GO TO READ-SHARED-EXIT. 
000200     IF WS-STAT1 = "2" OR "3" 
000210         MOVE 33 TO WS-F-ERROR 
000220         PERFORM READ-ERROR. 
000230     IF RECORD-LOCKED 
000240         PERFORM LOCK-USERS-REC 
000250             THRU LOCK-REC-EXIT 
000260             WS-COUNT TIMES 
000270         ADD 1 TO WS-COUNT 
000280         IF WS-COUNT > 25 
000290             MOVE 1 TO WS-COUNT 
000300         END-IF. 

Figure 5: Sample COBOL code 
 

In a traditional grammar, the PERFORM verb in COBOL 
might be expressed as in Figure 6 (this is greatly simplified). 

cPerform ::= "PERFORM" cParagraph 
      [("THROUGH" | "THRU") cParagraph] 
      [cTimes]; 
cTimes ::= cExpression "TIMES"; 
cParagraph ::= cIdentifier; 
cExpression ::= cIdentifier | cNumber; 
cIdentifier ::= cLetter 
      (cLetter | cDigit | "-")*; 
cNumber ::= cDigit+; 
cLetter ::= "A" .. "Z"; 
cDigit ::= "0" .. "9"; 

Figure 6: Traditional grammar example 
 

Once the COBOL program has been parsed, tools can be used 
to analyze the AST. Typically, such tools traverse the tree 
looking for specific named entities, such as cPerform. These 
tools depend heavily on the names used in the grammar. If 
somebody changes the name of an element in the grammar, 
there is no easy way to detect that change. 

Grammars used during a modernization effort tend to require 
significant changes when another effort begins, for a variety 
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of reasons. This can happen because of language variations, 
hardware variations, operating system variations, business-
specific conventions, etc. The tools depend heavily on the 
terms in the grammar, and the terms are in flux, so it is very 
easy for grammars to get out of sync with the analysis tools. 

This is the main reason why parsers and grammars do not 
scale well. Minor changes to grammars can have many subtle 
adverse effects on how parsers work, as well as the tools that 
perform subsequent processing tasks.  

Generally, traditional grammars and parsers are successful 
when there are only a few people working on them, and they 
are working on only one or two computer languages. Most 
large-scale businesses deal with dozens of computer 
languages. Getting a single parser to handle all languages is 
difficult, because many languages require significant pre-
processing. Also, getting some level of consistency between 
AST's is difficult. 

Our primary goal of parsing all major computer languages in a 
unified manner is only possible when the grammar and the 
analysis tools are written in the same language. This is the 
basis for our claim of scalability with Programmars. 

4 Motivating Example – Programmar 
With a Programmar, the rules related to COBOL PERFORM 
verbs could be expressed in a language like Java as in Figure 7. 
Again, this is a simplified version that does not reflect all 
possible PERFORM variations. 

class CobolPerform extends CobolStatement { 
  CobolKeyword PERFORM = 
      new CobolKeyword("PERFORM"); 
  CobolParagraph startPara; 
  @OPT CobolPerfThrough through; 
  @OPT CobolPerfTimes times; 
 
  class CobolPerfThrough extends TokenSequence { 
    CobolKeywordList THRU = 
        new CobolKeywordList("THRU", "THROUGH"); 
    CobolParagraph endPara; 
  } 
 
  class CobolPerfTimes extends TokenSequence { 
    CobolExpression count; 
    CobolKeyword TIMES = 
        new CobolKeyword("TIMES"); 
  } 
} 

Figure 7: Simplified Programmar example 
 

Terms like TokenSequence are built in to the Programmar 
API, and terms like CobolKeyword, CobolExpression, etc. are 
defined in other Java classes. 

The Java program representation shown serves two distinct 
purposes. First, the program can be considered a grammar for 
defining the PERFORM statement in COBOL, describing all 
the different ways the statement can be formed. Second, rather 

than creating an AST, the parsing process creates instances of 
this type of class. Collectively these instances form a 
Programmar Semantic Tree (PST). The PST can be stored as 
an XML file or as Java code that regenerates it. 

5 Advantages 
Although the Programmar approach is slightly more verbose 
than using a context-free grammar (CFG), the new approach 
offers four major advantages: 

In the Programmar approach, downstream impact of a change 
to any part of a Progammar will be detected immediately, 
because the Java Programmar won't compile. If somebody 
were to change the name of an element in the Programmar, all 
references to that name would become invalid until they were 
updated to be consistent with the changed element. This 
allows projects to scale to much more significant levels. It is 
now possible to have dozens of developers working on the 
same project, processing many computer languages. 

In the AST version, a cParagraph is just an identifier. There is 
no further information attached to it. If you write a tool to 
analyze or transform a COBOL program, you will have to 
search the rest of the AST to find out what is in that other 
paragraph. With the PST version, the CobolParagraph 
instance contains within it a reference to the actual definition 
of that paragraph, including all of its statements, line numbers, 
references, etc. This greatly simplifies the task of writing 
analysis and conversion tools. Some of the work in connecting 
references to definitions is accomplished as part of the parsing 
process, which lessens the effort required to create tools for 
subsequent processing tasks. 

The terminal nodes in a Programmar, such as CobolKeyword, 
are represented in Java code. When trying to parse a terminal 
node, the Java code has access to the current context. In 
Figure 8, COBOL level numbers are very important. A level 
number 10 following a level 05 means that the 10 should be 
stored in a sub-tree under the 05. But the next 10 should be 
stored under the same 05. In a Programmar, COBOL level 
number logic can examine the context to decide how to 
correctly build the hierarchy, without any post-processing. 

01  INV-L7. 
  05  FILLER    PIC  X(02). 
  05  INV-REMKS. 
    10  INV-SM      PIC  X(09). 
    10  INV-SMAN    PIC  X(31). 
  05  FILLER    PIC  X(05). 
  05  INV-RMKS. 
    10  FILLER      PIC  X(17). 
    10  INV-H18     PIC  X(12). 
    10  INV-TERMS. 
      15  INV-ADV   PIC  Z(06)9.99-. 

Figure 8: Traditional grammar example 
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Programmars are expressed in a modern programming 
language such as Java, which means the development 
methodologies associated with such a modern language can be 
used when working with Programmars. We identify the five 
following benefits. 

Abstraction. A traditional grammar is typically built to 
describe just one programming language. With the 
Programmar approach, the components common to all 
variations of a particular programming language can be placed 
into an Abstract Programmar class. For example, there are 
major variations of languages like Report Program Generator 
(RPG). A File specification has the same meaning across each 
variation, so an abstract RPGFile class can be used to define 
the common elements. The minor syntactic differences 
between RPG variations can then be represented by concrete 
classes that extend the abstract class. 

Inheritance. Frequently, there are variations on a computer 
programming language. For example, there are both fixed 
width (80 column) and free-format COBOL programs. Their 
meanings are virtually identical, but the syntax is very 
different. With a traditional grammar, the whole grammar 
might get copied and edited for each variation. With 
Programmar Inheritance, only the local changes need to be 
considered and the rest can be inherited from the main 
Programmar. 

Encapsulation. Some computer languages, such as HTML for 
web pages, often include other languages inside of them; 
Javascript, CSS or PHP in the case of HTML. In a traditional 
grammar, these are normally combined into a monolithic 
grammar covering all sub-languages. With Programmar 
Encapsulation, the main Programmar (e.g., HTML) can 
simply reference the other Programmar (e.g., Javascript). 

Logic. With Programmar logic, the full power of the 
programming language used to represent the Programmar 
(e.g., Java) is available for complicated cases. Managing the 
PICTURE level numbers in COBOL is a good example where 
logic is needed to assist the parsing process to build the 
correct hierarchy. 

Shared Processing.  Most terminal tokens are somewhat 
similar across programming languages. Generic processors for 
numbers, literal strings, punctuation, etc. are all made 
available by the Programmar API to use when writing 
Programmars. For example, parsing functionality for 
hexadecimal (hex, base 16) numbers can generally be 
implemented in just a few lines of Java by extending the 
generic hex number processor, and simply declaring their hex 
prefix or suffix. Comments, floating point numbers and string 
literals are simpler to implement in a Programmar than a 
traditional grammar, because they can utilize the built-in 
generic methods. 

6 Programmar Token Types 
Every element in a Programmar is an AbstractToken in the 
representation of a programming language. The following are 
the main types of Abstract Tokens. 

When a Programmar class extends TokenSequence, an 
instance of this type is identified during parsing when all of 
the fields in the class are present in the order specified (unless 
they are marked as optional). Inner classes are a convenient 
way to define sub-rules for such an element. 

Programmar classes that extend TokenChooser have both 
fields and inner classes, and the parser will attempt to match 
both. Each can be marked with @FIRST or @LAST because 
the parser makes three passes. The first looks only at @FIRST 
elements, the second looks at neither @FIRST or @LAST 
elements, and the third pass looks only at @LAST elements. 
This gives another level of control over the parser, and can be 
used to speed up the parser. 

Care must be used in the order of the elements in a 
TokenChooser. Once a token matches from the list of choices, 
no other tokens are considered. This is done for efficiency 
purposes and doesn't seem to impose any restrictions other 
than being careful with ordering. BNF-like rules such as "<A> 
::= <X> | <X> <Y>;" need to be written in the other order. 

A field may be a TokenList of another token type, typically a 
TokenSequence. It will match one or more instances of that 
type (or zero if @OPT is also present). 

This is a specialized token to help represent expressions in 
most computer languages. It allows a declarative specification 
of unary operators (like minus and not) and binary operators 
(like plus and times). The order of the elements in the 
specification determines their precedence. In most BNF-like 
grammars, this is a complicated process and often verbose. 
The Programmar approach includes a short-cut way to define 
operator precedence, which reduces complexity. 

The parser also handles the "left-recursion" problem. A 
Programmar class can represent a BNF-like rule (essentially) 
as "expr ::= expr + expr" without getting into an infinite loop. 

Typical AST's built from parsing expressions can be very 
long. Our parsing process eliminates needless intermediate 
layers, which greatly reduces the size and complexity of the 
resulting PST. For example, if there is no multiplication in the 
expression, then there is no multiplication node in the PST. 

In some situations, we may know there will be some 
statements we might not be able to parse. In that case, we can 
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add an @LAST UnparsedElement to a TokenChooser. This 
may allow parsing to continue in the event of a parse failure, 
resulting in a "soft" parse failure. 

@OPT is used to indicate that a Token is optional. It is often 
used in conjunction with a TokenList to mean zero or more 
elements instead of one or more. 

There are several types of pre-defined terminal tokens, such 
as: 

• TerminalLiteralToken 

• TerminalNumberToken 

• TerminalPunctuationToken 

• TerminalKeywordToken 

• TerminalCommentToken 
Each of these provides built-in generic parsers to support most 
programming languages. Furthermore, each has an associated 
CSS style for the code inspection modules so it is easy to 
visually identify all the literals, numbers, comments, etc. in a 
computer program listing. 

7 How Programmars Work 
The central idea behind parsing with Programmars is to use 
Reflection to fill in the PST with the results of the parsing 
process. It uses a top-down approach with no look-ahead (i.e., 
it is an LL(0) grammar [15]). No token pre-processor is 
required. 

The use of a Programmar differs greatly from a Recursive 
Descent Parser (RDP) [15] because Programmars use a 
declarative way of representing computer languages and rely 
on Java reflection to decide how to parse. Other than terminal 
nodes, there is no logic in a Programmar. A RDP, in contrast, 
uses programming logic for matching each and every node in 
the grammar. 

The Programmar parsing process is context-sensitive for 
terminal nodes in the sense that the current (partial) parse tree 
is accessible to the terminal node parser. For example, PL/I 
level numbers are hierarchical like COBOL level numbers and 
they are parsed by looking at what is already in the parse tree. 

Reflection is heavily used in a Programmar parser. The parser 
examines all the data fields and classes inside a given class. 
Depending on the type of Abstract Token, a different strategy 
is used. For a Token Sequence, all the elements must be 
present in the given order. If any one element doesn’t match, 
the whole Token Sequence fails. Recursion is also heavily 
used since Abstract Tokens may contain other Abstract 
Tokens. 

There is no grammar (other than the Java program), and there 
is no AST. The result is a programmatic representation of the 
original source program. This technique has been 
demonstrated to parse dozens of computer programming 
languages such as Assembler, Fortran, PL/I, RPG, Java, 

Visual Basic, Delphi, DOS, SQL, Python, C++, and many 
more. 

One of the available outputs of the Programmar parser is a 
traditional grammar. In other words, given the Programmar 
representation of the COBOL programming language, the 
system can automatically generate a traditional BNF-like 
grammar from it. 

8 JSON Example 
Javascript Object Notation  (JSON) is a simple language, so it 
is convenient to use for an abbreviated example, with some 
key parts omitted from the Programmar shown in Figure 9. 

public class JSON_Program extends Language { 
  public TokenList<JSON_Element> elements; 
} 
 
public class JSON_Element extends TokenChooser { 
  public JSON_Literal literal; 
  public JSON_Number number; 
  public JSON_Object object; 
  public JSON_Dict dictionary; 
  public JSON_KeywordChoice constants = new 
    JSON_KeywordChoice("null", "true", "false"); 
} 
 
public class JSON_Object extends TokenSequence { 
  public JSON_Punctuation leftBracket = new 
    JSON_Punctuation('['); 
  public @OPT JSON_Element element; 
  public @OPT TokenList<JSON_MoreElements> more; 
  public JSON_Punctuation rightBracket = new 
    JSON_Punctuation(']'); 
} 
 
public class JSON_Dict extends TokenSequence { 
  public JSON_Punctuation leftBrace = new 
    JSON_Punctuation('{'); 
  public @OPT JSON_Entry entry; 
  public @OPT TokenList<JSON_MoreEntries> more; 
  public JSON_Punctuation rightBrace = new 
    JSON_Punctuation('}'); 
} 
 
public class JSON_Entry extends TokenSequence { 
  public JSON_Literal name; 
  public JSON_Punctuation colon = new 
    JSON_Punctuation(':'); 
  public JSON_Element value; 
} 

Figure 9: JSON Programmar 
 

 [ 
  { 
    "pk": "1", 
    "model": "fixtures_regress.absolute", 
    "fields": { 
      "name": "Load Absolute Path Test" 
    } 
  } 
] 

Figure 10: Sample JSON source code 
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Consider the sample JSON source code in Figure 10. The 
trace in Figure 11 shows the parsing process. "Next" is the 
current character sequence. "Pattern" is the name of the 
Programmar class. The leading periods show the parsing 
recursion depth. 

Next    Pattern 
======  ======================================= 
[       ? JSON_Program 
[       .? JSON_Element 
[       ..? JSON_Literal () 
[       .. Failed JSON_Literal () 
[       ..? JSON_Number 
[       .. Failed JSON_Number 
[       ..? JSON_Object 
[       ...? JSON_Punctuation ([) 
{       ... ***** Match JSON_Punctuation ([) 
{       ...? JSON_Element 
{       ....? JSON_Literal () 
{       .... Failed JSON_Literal () 
{       ....? JSON_Number 
{       .... Failed JSON_Number 
{       ....? JSON_Object 
{       .....? JSON_Punctuation ([) 
{       ..... Failed JSON_Punctuation ([) 
{       .... Failed JSON_Object 
{       ....? JSON_Dict 
{       .....? JSON_Punctuation ({) 
"pk":   ..... ***** Match JSON_Punctuation ({) 
"pk":   .....? JSON_Entry 
"pk":   ......? JSON_Literal () 
: "1"   ...... ***** Match JSON_Literal ("pk") 
: "1"   ......? JSON_Punctuation (:) 
"1",    ...... ***** Match JSON_Punctuation (:) 
"1",    ......? JSON_Element 
"1",    .......? JSON_Literal () 
,       ....... ***** Match JSON_Literal ("1") 
,       ...... ***** Match JSON_Element 
,       ..... ***** Match JSON_Entry 
    (59 lines omitted) 
]       ..... ***** Match JSON_Punctuation (}) 
]       .... ***** Match JSON_Dict 
]       ... ***** Match JSON_Element 
]       ...? JSON_MoreElements 
]       ....? JSON_Punctuation (,) 
]       .... Failed JSON_Punctuation (,) 
]       ... Failed JSON_MoreElements 
]       ...? JSON_Punctuation (]) 
(EOF)   ... ***** Match JSON_Punctuation (]) 
(EOF)   .. ***** Match JSON_Object 
(EOF)   . ***** Match JSON_Element 
(EOF)   . ? JSON_Element 
(EOF)   ***** Match JSON_Program 

Figure 11: Trace of the parsing process 
 

To parse a JSON_Program, the parser first tries to match a 
JSON_Element, which has to be a JSON_Literal, or a 
JSON_Number, etc. The parser eventually matches on a 
JSON_Object, at the fourth line from the bottom in Figure 11. 

Each "?" in Figure 11 represents one parsing step. Each step 
should be considered a parsing attempt, which may or may 
not match the input text stream. 

Figure 12 is an abbreviated version of the generated XML 
version of the PST. Starting and ending character and line 
positions are in the actual XML file for every token. 

<Program Elapsed="1" Steps="52" Tokens="35"> 
 <Token TT="JSON_Program"> 
  <Token Name="elements" TT="List"> 
   <Token TT="JSON_Element"> 
    <Token TT="JSON_Object"> 
     <Token Name="leftBracket" 
       TT="JSON_Punctuation" V="["/> 
     <Token Name="element" TT="JSON_Element"> 
      <Token TT="JSON_Dict"> 
       <Token Name="leftBrace" 
         TT="JSON_Punctuation" V="{"/> 
       <Token Name="entry" TT="JSON_Entry"> 
        <Token Name="name" 
          TT="JSON_Literal" V="pk"/> 
        <Token Name="colon" 
          TT="JSON_Punctuation" V=":"/> 
        <Token Name="value" TT="JSON_Element"> 
         <Token TT="JSON_Literal" V="1"/> 
        </Token> 
       </Token> 
       <Token Name="more" TT="List"/> (omitted) 
       <Token Name="rightBrace" 
         TT="JSON_Punctuation" V="}"/> 
      </Token> 
     </Token> 
     <Token Name="rightBracket" 
       TT="JSON_Punctuation" V="]"/> 
    </Token> 
   </Token> 
  </Token> 
 </Token> 
</Program> 

Figure 12: XML representation of a PST 
 

According to the first line, this took approximately 1 ms to 
parse, with 52 parsing steps. There are 35 tokens in the final 
PST. Note that the "more" token was omitted from this listing. 

9 Additional Tools 
Initial versions of these code analysis tools are available. 

We define a project as a (possibly large) collection of 
computer programs written in a variety of different 
programming languages. In our system, a project is a Java 
class that specifies what language to use for each source file, 
what character encoding it has, how to interpret tabs in it, etc. 
A project also has a very small editor built-in to repair known 
problems in specific files. For example, missing semicolons 
can be added or typos repaired. A project uses a simple 
regular expression matcher on pre-specified line numbers on 
specific files. 

Given a Programmar, a traditional BNF-like grammar can be 
generated from it. However, since terminal nodes are 
expressed as Java methods, not as grammar rules, they cannot 
be generated automatically. When used on a collection of 
computer programs, frequency counts are also available 
showing how many instances of each rule are present in that 
project. 

Once a computer program has been parsed, the parsing results 
can also be used to regenerate the original program, but in a 

130 Int'l Conf. Software Eng. Research and Practice |  SERP'15 |



canonical form. Indentation can be fixed, extra spaces 
eliminated, capitalization standardized, etc. Elements in the 
Programmar can have annotations on them to assist with the 
output formatting, such as @NEWLINE, @NOSPACE, 
@INDENT, and @OUTDENT. 

The parser can generate a tracing output, either in plain text or 
html. Sometimes this output is not sufficient, such as when 
debugging a parse failure. A visual debugger is available for 
this with commands like Step-in, Step-over, Continue, etc. 

Once a program has been parsed, an html report can be 
created for it, with color codes for all the different kinds of 
terminal nodes. In addition, elements in the Programmar can 
be labelled with @DOC("href") to create a hyperlink to an 
online document describing that keyword. 

While working on large projects, or more than one project, it 
is often useful to monitor parsing progress. Web-based tools 
are available to show all active projects and all active 
languages. For each project, all the files are shown with 
statistics like number of lines, size of the resulting parse 
output, parsing speed, etc. If a parse fails, a link is provided to 
view the details of the parse failure, including the lines around 
the failure. 

For each language, details are shown as well for each source 
file such as parse success rates for that language and average 
parse speeds. A BNF-like grammar for that language is also 
viewable, with frequency counts. 

For many languages such as C, PL/I and COBOL, parsing is 
sometimes not possible in a single pass. We have a pre-
processor available to resolve macros. Generally, not all 
macros need to be expanded, so controls are available to 
choose which macros to expand and which to leave intact. 

10 Future Work 
We plan to create an open-source repository for Programmars 
as well as an API for parsing programs over the web. 

Work has already begun on connecting variable references to 
their definitions. In some cases, this can be done while 
parsing, but in many cases such connections must be done in a 
separate step because they depend on successfully parsing 
other files. 

Ultimately, this work is intended to be helpful in application 
modernization, especially from legacy programming 
languages to more modern languages. 

11 Conclusion 
The Programmar approach builds on top of traditional parsing 
technologies. It greatly facilitates scalability and cross-
language processing, and it is also context-sensitive (for 

terminal nodes). As of this writing, several dozen 
programming languages have Programmars built for them, 
with varying degrees of completeness. These Programmars 
have been used to parse millions of lines of code. A patent is 
pending on this technique. 
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