
Programmars: A Revolution in Computer Language Parsing

Steven A. O’Hara, PhD
Eagle Legacy Modernization, LLC

702 Southwick Avenue
Grovetown, GA 30813
steve@eaglegacy.com

Topical keywords: parser, grammar, software analysis

Abstract - This paper presents a revolutionary way to parse
computer programming languages without a traditional
grammar. The motivation behind this approach is to
dramatically increase scalability. The intention is to be able
to parse and analyze billions of lines of code written in
hundreds of programming languages. To achieve that goal, it
is advantageous to have sharable, open-source, modular ways
for defining the syntax and semantics of programming
languages. The new parsing technique replaces a traditional
grammar with a computer program, referred to as a
Programmar (short for program and grammar). All the basic
operations in BNF (sequencing, alternation, optional terms,
repeating and grouping) are supported, and the Java code is
both sharable and modular. This parsing approach enables
dozens or even hundreds of developers to work on computer
program analysis concurrently, while avoiding many of the
consistency issues encountered when building grammars and
associated code analysis tools.

1 Introduction
Businesses around the world today collectively have billions
of lines of production software written in legacy computer
languages like COBOL, RPG, PL/I, Fortran and Natural.
These organizations are highly motivated to modernize their
software for a number of reasons, including difficulties in
maintaining old, brittle code [1] and in hiring people with
legacy skillsets [2]. Unfortunately the modernization process
is often either prohibitively expensive or produces new
software of low quality that is difficult to maintain going
forward into the future [3]. Available modernization tools
(e.g. [4 to 8]) tend not to be scalable enough to handle large,
complex software systems that can be comprised of tens of
millions of lines of code written in multiple programming
languages.

For the past several decades, legacy software analysis tools
have been typified by the type of parser generated by Yet-
Another-Compiler-Compiler (YACC) [9]. Such a parser
interprets computer program code based on a Context-Free
Grammar, which is a declarative description of the syntax of a
specific programming language. This parsing process relies on
a separate token pre-processor (typically LEX, the Lexical
Analyzer [10]) and generates an Abstract Syntax Tree (AST).

Modern programming languages also continue to evolve and
require solid analysis approaches (e.g. [11 to 13]). For
example, managing deprecated code often requires detailed
software analysis similar to application modernization.
Unfortunately, there are many one-off grammars and tools for
source code analysis, but no standard or shared tools that
work well across many programming languages at the same
time. With our technique, we process languages as disparate
as Java, HTML, CSS, DOS, XML, COBOL, Natural and RPG
using a single parser.

This paper introduces a new parsing technique that embeds all
required parsing information within a Java program. All of the
elements needed to describe the computer programming
language(s) to be parsed are embedded in the Java program as
fields, classes or methods within Java classes. The focus of
this work to date is on parsing languages in the context of
legacy application modernization.

Grammar rules can be separated into two categories, those
that depend on other rules (defining non-terminals) and those
that consume characters in the input stream (terminals).
Examples of terminals are string literals, comments, numbers,
keywords, and punctuation.

In the Programmar approach, Java methods are used for
parsing terminals, while classes are defined to enable parsing
of non-terminals. The Programmar API uses Java reflection
[14] to dynamically infer a grammar while parsing.

2 Comparison to Old Grammars
This section describes the relationship between a traditional
BNF-like grammar and our new Programmar.

Given a BNF production rule of the form
<A> ::= <X> <Y> <Z>;

This is represented in a Programmar as in Figure 1.

public class A extends TokenSequence {
public X x;
public Y y;
public Z z;

}

Figure 1: Sequencing Programmar example

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 125

Note that the elements are anonymous in the BNF grammar.
The BNF production rule indicates only that an instance of
type A can consist of an (unnamed) instance of type X,
followed by an instance of type Y, and then an instance of
type Z. In Figure 1, however, the instances are named, which
means these specific instances can be referred to from
elsewhere in the Programmar or in associated source code
analysis programs. This turns out to be extremely valuable
when analyzing computer source code.

Given a BNF production rule of the form
 <A> ::= <X> | <Y> | <Z>;

This is represented in a Programmar as in Figure 2.

public class A extends TokenChooser {
 public X x;
 public Y y;
 public Z z;
}

Figure 2: Alternation Programmar example

This means that exactly one of the three elements must be
present to be recognized as an instance of type A. As a
convenience, anonymous inner classes can be used as well.

Given a BNF production rule of the form
 <A> ::= <X> [<Y>] <Z>;

This is represented in a Programmar as in Figure 3.

public class A extends TokenSequence {
 public X x;
 public @OPT Y y;
 public Z z;
}

Figure 3: Optional item Programmar example

Given a BNF production rule of the form
 <A> ::= <X> <Y>* <Z>;

This is represented in a Programmar as in Figure 4.

public class A extends TokenSequence {
 public X x;
 public @OPT TokenList<Y> y;
 public Z z;
}

Figure 4: Repeating term Programmar example

The ‘+’ BNF notation is handled in a similar manner, without
the @OPT.

Java code is provided by the Programmar API to assist
parsing the most common terminal nodes. For example, string
literals in various programming languages commonly have a
number of features such as:

• Single or double quotes?

• Are pairs of quotes treated as single quote?
• What is the escape character, if any?
• Can a literal span multiple lines?

Similar routines are available for comments, numbers,
punctuation, etc. By using Java code for the terminal nodes,
the parsing speed is greatly improved. In our experience,
writing a BNF-like grammar for a floating point number or a
string literal can be challenging and time consuming.

It is not necessary to use one of the built-in methods for
parsing terminal nodes. For example, Python has very strict
rules for indentation. Rather than pre-processing the input
stream, a Start-of-line terminal node can be used to handle the
indentation logic correctly.

3 Motivating Example – Old Grammar
Consider the two PERFORM statements in Figure 5.

000160 READ-SHARED-LOCK.
000170 READ SHARED WITH LOCK.
000180 IF WS-STATUS = "00"
000190 GO TO READ-SHARED-EXIT.
000200 IF WS-STAT1 = "2" OR "3"
000210 MOVE 33 TO WS-F-ERROR
000220 PERFORM READ-ERROR.
000230 IF RECORD-LOCKED
000240 PERFORM LOCK-USERS-REC
000250 THRU LOCK-REC-EXIT
000260 WS-COUNT TIMES
000270 ADD 1 TO WS-COUNT
000280 IF WS-COUNT > 25
000290 MOVE 1 TO WS-COUNT
000300 END-IF.

Figure 5: Sample COBOL code

In a traditional grammar, the PERFORM verb in COBOL
might be expressed as in Figure 6 (this is greatly simplified).

cPerform ::= "PERFORM" cParagraph
 [("THROUGH" | "THRU") cParagraph]
 [cTimes];
cTimes ::= cExpression "TIMES";
cParagraph ::= cIdentifier;
cExpression ::= cIdentifier | cNumber;
cIdentifier ::= cLetter
 (cLetter | cDigit | "-")*;
cNumber ::= cDigit+;
cLetter ::= "A" .. "Z";
cDigit ::= "0" .. "9";

Figure 6: Traditional grammar example

Once the COBOL program has been parsed, tools can be used
to analyze the AST. Typically, such tools traverse the tree
looking for specific named entities, such as cPerform. These
tools depend heavily on the names used in the grammar. If
somebody changes the name of an element in the grammar,
there is no easy way to detect that change.

Grammars used during a modernization effort tend to require
significant changes when another effort begins, for a variety

126 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

of reasons. This can happen because of language variations,
hardware variations, operating system variations, business-
specific conventions, etc. The tools depend heavily on the
terms in the grammar, and the terms are in flux, so it is very
easy for grammars to get out of sync with the analysis tools.

This is the main reason why parsers and grammars do not
scale well. Minor changes to grammars can have many subtle
adverse effects on how parsers work, as well as the tools that
perform subsequent processing tasks.

Generally, traditional grammars and parsers are successful
when there are only a few people working on them, and they
are working on only one or two computer languages. Most
large-scale businesses deal with dozens of computer
languages. Getting a single parser to handle all languages is
difficult, because many languages require significant pre-
processing. Also, getting some level of consistency between
AST's is difficult.

Our primary goal of parsing all major computer languages in a
unified manner is only possible when the grammar and the
analysis tools are written in the same language. This is the
basis for our claim of scalability with Programmars.

4 Motivating Example – Programmar
With a Programmar, the rules related to COBOL PERFORM
verbs could be expressed in a language like Java as in Figure 7.
Again, this is a simplified version that does not reflect all
possible PERFORM variations.

class CobolPerform extends CobolStatement {
 CobolKeyword PERFORM =
 new CobolKeyword("PERFORM");
 CobolParagraph startPara;
 @OPT CobolPerfThrough through;
 @OPT CobolPerfTimes times;

 class CobolPerfThrough extends TokenSequence {
 CobolKeywordList THRU =
 new CobolKeywordList("THRU", "THROUGH");
 CobolParagraph endPara;
 }

 class CobolPerfTimes extends TokenSequence {
 CobolExpression count;
 CobolKeyword TIMES =
 new CobolKeyword("TIMES");
 }
}

Figure 7: Simplified Programmar example

Terms like TokenSequence are built in to the Programmar
API, and terms like CobolKeyword, CobolExpression, etc. are
defined in other Java classes.

The Java program representation shown serves two distinct
purposes. First, the program can be considered a grammar for
defining the PERFORM statement in COBOL, describing all
the different ways the statement can be formed. Second, rather

than creating an AST, the parsing process creates instances of
this type of class. Collectively these instances form a
Programmar Semantic Tree (PST). The PST can be stored as
an XML file or as Java code that regenerates it.

5 Advantages
Although the Programmar approach is slightly more verbose
than using a context-free grammar (CFG), the new approach
offers four major advantages:

In the Programmar approach, downstream impact of a change
to any part of a Progammar will be detected immediately,
because the Java Programmar won't compile. If somebody
were to change the name of an element in the Programmar, all
references to that name would become invalid until they were
updated to be consistent with the changed element. This
allows projects to scale to much more significant levels. It is
now possible to have dozens of developers working on the
same project, processing many computer languages.

In the AST version, a cParagraph is just an identifier. There is
no further information attached to it. If you write a tool to
analyze or transform a COBOL program, you will have to
search the rest of the AST to find out what is in that other
paragraph. With the PST version, the CobolParagraph
instance contains within it a reference to the actual definition
of that paragraph, including all of its statements, line numbers,
references, etc. This greatly simplifies the task of writing
analysis and conversion tools. Some of the work in connecting
references to definitions is accomplished as part of the parsing
process, which lessens the effort required to create tools for
subsequent processing tasks.

The terminal nodes in a Programmar, such as CobolKeyword,
are represented in Java code. When trying to parse a terminal
node, the Java code has access to the current context. In
Figure 8, COBOL level numbers are very important. A level
number 10 following a level 05 means that the 10 should be
stored in a sub-tree under the 05. But the next 10 should be
stored under the same 05. In a Programmar, COBOL level
number logic can examine the context to decide how to
correctly build the hierarchy, without any post-processing.

01 INV-L7.
 05 FILLER PIC X(02).
 05 INV-REMKS.
 10 INV-SM PIC X(09).
 10 INV-SMAN PIC X(31).
 05 FILLER PIC X(05).
 05 INV-RMKS.
 10 FILLER PIC X(17).
 10 INV-H18 PIC X(12).
 10 INV-TERMS.
 15 INV-ADV PIC Z(06)9.99-.

Figure 8: Traditional grammar example

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 127

Programmars are expressed in a modern programming
language such as Java, which means the development
methodologies associated with such a modern language can be
used when working with Programmars. We identify the five
following benefits.

Abstraction. A traditional grammar is typically built to
describe just one programming language. With the
Programmar approach, the components common to all
variations of a particular programming language can be placed
into an Abstract Programmar class. For example, there are
major variations of languages like Report Program Generator
(RPG). A File specification has the same meaning across each
variation, so an abstract RPGFile class can be used to define
the common elements. The minor syntactic differences
between RPG variations can then be represented by concrete
classes that extend the abstract class.

Inheritance. Frequently, there are variations on a computer
programming language. For example, there are both fixed
width (80 column) and free-format COBOL programs. Their
meanings are virtually identical, but the syntax is very
different. With a traditional grammar, the whole grammar
might get copied and edited for each variation. With
Programmar Inheritance, only the local changes need to be
considered and the rest can be inherited from the main
Programmar.

Encapsulation. Some computer languages, such as HTML for
web pages, often include other languages inside of them;
Javascript, CSS or PHP in the case of HTML. In a traditional
grammar, these are normally combined into a monolithic
grammar covering all sub-languages. With Programmar
Encapsulation, the main Programmar (e.g., HTML) can
simply reference the other Programmar (e.g., Javascript).

Logic. With Programmar logic, the full power of the
programming language used to represent the Programmar
(e.g., Java) is available for complicated cases. Managing the
PICTURE level numbers in COBOL is a good example where
logic is needed to assist the parsing process to build the
correct hierarchy.

Shared Processing. Most terminal tokens are somewhat
similar across programming languages. Generic processors for
numbers, literal strings, punctuation, etc. are all made
available by the Programmar API to use when writing
Programmars. For example, parsing functionality for
hexadecimal (hex, base 16) numbers can generally be
implemented in just a few lines of Java by extending the
generic hex number processor, and simply declaring their hex
prefix or suffix. Comments, floating point numbers and string
literals are simpler to implement in a Programmar than a
traditional grammar, because they can utilize the built-in
generic methods.

6 Programmar Token Types
Every element in a Programmar is an AbstractToken in the
representation of a programming language. The following are
the main types of Abstract Tokens.

When a Programmar class extends TokenSequence, an
instance of this type is identified during parsing when all of
the fields in the class are present in the order specified (unless
they are marked as optional). Inner classes are a convenient
way to define sub-rules for such an element.

Programmar classes that extend TokenChooser have both
fields and inner classes, and the parser will attempt to match
both. Each can be marked with @FIRST or @LAST because
the parser makes three passes. The first looks only at @FIRST
elements, the second looks at neither @FIRST or @LAST
elements, and the third pass looks only at @LAST elements.
This gives another level of control over the parser, and can be
used to speed up the parser.

Care must be used in the order of the elements in a
TokenChooser. Once a token matches from the list of choices,
no other tokens are considered. This is done for efficiency
purposes and doesn't seem to impose any restrictions other
than being careful with ordering. BNF-like rules such as "<A>
::= <X> | <X> <Y>;" need to be written in the other order.

A field may be a TokenList of another token type, typically a
TokenSequence. It will match one or more instances of that
type (or zero if @OPT is also present).

This is a specialized token to help represent expressions in
most computer languages. It allows a declarative specification
of unary operators (like minus and not) and binary operators
(like plus and times). The order of the elements in the
specification determines their precedence. In most BNF-like
grammars, this is a complicated process and often verbose.
The Programmar approach includes a short-cut way to define
operator precedence, which reduces complexity.

The parser also handles the "left-recursion" problem. A
Programmar class can represent a BNF-like rule (essentially)
as "expr ::= expr + expr" without getting into an infinite loop.

Typical AST's built from parsing expressions can be very
long. Our parsing process eliminates needless intermediate
layers, which greatly reduces the size and complexity of the
resulting PST. For example, if there is no multiplication in the
expression, then there is no multiplication node in the PST.

In some situations, we may know there will be some
statements we might not be able to parse. In that case, we can

128 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

add an @LAST UnparsedElement to a TokenChooser. This
may allow parsing to continue in the event of a parse failure,
resulting in a "soft" parse failure.

@OPT is used to indicate that a Token is optional. It is often
used in conjunction with a TokenList to mean zero or more
elements instead of one or more.

There are several types of pre-defined terminal tokens, such
as:

• TerminalLiteralToken

• TerminalNumberToken

• TerminalPunctuationToken

• TerminalKeywordToken

• TerminalCommentToken
Each of these provides built-in generic parsers to support most
programming languages. Furthermore, each has an associated
CSS style for the code inspection modules so it is easy to
visually identify all the literals, numbers, comments, etc. in a
computer program listing.

7 How Programmars Work
The central idea behind parsing with Programmars is to use
Reflection to fill in the PST with the results of the parsing
process. It uses a top-down approach with no look-ahead (i.e.,
it is an LL(0) grammar [15]). No token pre-processor is
required.

The use of a Programmar differs greatly from a Recursive
Descent Parser (RDP) [15] because Programmars use a
declarative way of representing computer languages and rely
on Java reflection to decide how to parse. Other than terminal
nodes, there is no logic in a Programmar. A RDP, in contrast,
uses programming logic for matching each and every node in
the grammar.

The Programmar parsing process is context-sensitive for
terminal nodes in the sense that the current (partial) parse tree
is accessible to the terminal node parser. For example, PL/I
level numbers are hierarchical like COBOL level numbers and
they are parsed by looking at what is already in the parse tree.

Reflection is heavily used in a Programmar parser. The parser
examines all the data fields and classes inside a given class.
Depending on the type of Abstract Token, a different strategy
is used. For a Token Sequence, all the elements must be
present in the given order. If any one element doesn’t match,
the whole Token Sequence fails. Recursion is also heavily
used since Abstract Tokens may contain other Abstract
Tokens.

There is no grammar (other than the Java program), and there
is no AST. The result is a programmatic representation of the
original source program. This technique has been
demonstrated to parse dozens of computer programming
languages such as Assembler, Fortran, PL/I, RPG, Java,

Visual Basic, Delphi, DOS, SQL, Python, C++, and many
more.

One of the available outputs of the Programmar parser is a
traditional grammar. In other words, given the Programmar
representation of the COBOL programming language, the
system can automatically generate a traditional BNF-like
grammar from it.

8 JSON Example
Javascript Object Notation (JSON) is a simple language, so it
is convenient to use for an abbreviated example, with some
key parts omitted from the Programmar shown in Figure 9.

public class JSON_Program extends Language {
 public TokenList<JSON_Element> elements;
}

public class JSON_Element extends TokenChooser {
 public JSON_Literal literal;
 public JSON_Number number;
 public JSON_Object object;
 public JSON_Dict dictionary;
 public JSON_KeywordChoice constants = new
 JSON_KeywordChoice("null", "true", "false");
}

public class JSON_Object extends TokenSequence {
 public JSON_Punctuation leftBracket = new
 JSON_Punctuation('[');
 public @OPT JSON_Element element;
 public @OPT TokenList<JSON_MoreElements> more;
 public JSON_Punctuation rightBracket = new
 JSON_Punctuation(']');
}

public class JSON_Dict extends TokenSequence {
 public JSON_Punctuation leftBrace = new
 JSON_Punctuation('{');
 public @OPT JSON_Entry entry;
 public @OPT TokenList<JSON_MoreEntries> more;
 public JSON_Punctuation rightBrace = new
 JSON_Punctuation('}');
}

public class JSON_Entry extends TokenSequence {
 public JSON_Literal name;
 public JSON_Punctuation colon = new
 JSON_Punctuation(':');
 public JSON_Element value;
}

Figure 9: JSON Programmar

 [
 {
 "pk": "1",
 "model": "fixtures_regress.absolute",
 "fields": {
 "name": "Load Absolute Path Test"
 }
 }
]

Figure 10: Sample JSON source code

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 129

Consider the sample JSON source code in Figure 10. The
trace in Figure 11 shows the parsing process. "Next" is the
current character sequence. "Pattern" is the name of the
Programmar class. The leading periods show the parsing
recursion depth.

Next Pattern
====== =======================================
[? JSON_Program
[.? JSON_Element
[..? JSON_Literal ()
[.. Failed JSON_Literal ()
[..? JSON_Number
[.. Failed JSON_Number
[..? JSON_Object
[...? JSON_Punctuation ([)
{ ... ***** Match JSON_Punctuation ([)
{ ...? JSON_Element
{ ? JSON_Literal ()
{ Failed JSON_Literal ()
{ ? JSON_Number
{ Failed JSON_Number
{ ? JSON_Object
{ ? JSON_Punctuation ([)
{ Failed JSON_Punctuation ([)
{ Failed JSON_Object
{ ? JSON_Dict
{ ? JSON_Punctuation ({)
"pk": ***** Match JSON_Punctuation ({)
"pk": ? JSON_Entry
"pk": ? JSON_Literal ()
: "1" ***** Match JSON_Literal ("pk")
: "1" ? JSON_Punctuation (:)
"1", ***** Match JSON_Punctuation (:)
"1", ? JSON_Element
"1", ? JSON_Literal ()
, ***** Match JSON_Literal ("1")
, ***** Match JSON_Element
, ***** Match JSON_Entry
 (59 lines omitted)
] ***** Match JSON_Punctuation (})
] ***** Match JSON_Dict
] ... ***** Match JSON_Element
] ...? JSON_MoreElements
] ? JSON_Punctuation (,)
] Failed JSON_Punctuation (,)
] ... Failed JSON_MoreElements
] ...? JSON_Punctuation (])
(EOF) ... ***** Match JSON_Punctuation (])
(EOF) .. ***** Match JSON_Object
(EOF) . ***** Match JSON_Element
(EOF) . ? JSON_Element
(EOF) ***** Match JSON_Program

Figure 11: Trace of the parsing process

To parse a JSON_Program, the parser first tries to match a
JSON_Element, which has to be a JSON_Literal, or a
JSON_Number, etc. The parser eventually matches on a
JSON_Object, at the fourth line from the bottom in Figure 11.

Each "?" in Figure 11 represents one parsing step. Each step
should be considered a parsing attempt, which may or may
not match the input text stream.

Figure 12 is an abbreviated version of the generated XML
version of the PST. Starting and ending character and line
positions are in the actual XML file for every token.

<Program Elapsed="1" Steps="52" Tokens="35">
 <Token TT="JSON_Program">
 <Token Name="elements" TT="List">
 <Token TT="JSON_Element">
 <Token TT="JSON_Object">
 <Token Name="leftBracket"
 TT="JSON_Punctuation" V="["/>
 <Token Name="element" TT="JSON_Element">
 <Token TT="JSON_Dict">
 <Token Name="leftBrace"
 TT="JSON_Punctuation" V="{"/>
 <Token Name="entry" TT="JSON_Entry">
 <Token Name="name"
 TT="JSON_Literal" V="pk"/>
 <Token Name="colon"
 TT="JSON_Punctuation" V=":"/>
 <Token Name="value" TT="JSON_Element">
 <Token TT="JSON_Literal" V="1"/>
 </Token>
 </Token>
 <Token Name="more" TT="List"/> (omitted)
 <Token Name="rightBrace"
 TT="JSON_Punctuation" V="}"/>
 </Token>
 </Token>
 <Token Name="rightBracket"
 TT="JSON_Punctuation" V="]"/>
 </Token>
 </Token>
 </Token>
 </Token>
</Program>

Figure 12: XML representation of a PST

According to the first line, this took approximately 1 ms to
parse, with 52 parsing steps. There are 35 tokens in the final
PST. Note that the "more" token was omitted from this listing.

9 Additional Tools
Initial versions of these code analysis tools are available.

We define a project as a (possibly large) collection of
computer programs written in a variety of different
programming languages. In our system, a project is a Java
class that specifies what language to use for each source file,
what character encoding it has, how to interpret tabs in it, etc.
A project also has a very small editor built-in to repair known
problems in specific files. For example, missing semicolons
can be added or typos repaired. A project uses a simple
regular expression matcher on pre-specified line numbers on
specific files.

Given a Programmar, a traditional BNF-like grammar can be
generated from it. However, since terminal nodes are
expressed as Java methods, not as grammar rules, they cannot
be generated automatically. When used on a collection of
computer programs, frequency counts are also available
showing how many instances of each rule are present in that
project.

Once a computer program has been parsed, the parsing results
can also be used to regenerate the original program, but in a

130 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

canonical form. Indentation can be fixed, extra spaces
eliminated, capitalization standardized, etc. Elements in the
Programmar can have annotations on them to assist with the
output formatting, such as @NEWLINE, @NOSPACE,
@INDENT, and @OUTDENT.

The parser can generate a tracing output, either in plain text or
html. Sometimes this output is not sufficient, such as when
debugging a parse failure. A visual debugger is available for
this with commands like Step-in, Step-over, Continue, etc.

Once a program has been parsed, an html report can be
created for it, with color codes for all the different kinds of
terminal nodes. In addition, elements in the Programmar can
be labelled with @DOC("href") to create a hyperlink to an
online document describing that keyword.

While working on large projects, or more than one project, it
is often useful to monitor parsing progress. Web-based tools
are available to show all active projects and all active
languages. For each project, all the files are shown with
statistics like number of lines, size of the resulting parse
output, parsing speed, etc. If a parse fails, a link is provided to
view the details of the parse failure, including the lines around
the failure.

For each language, details are shown as well for each source
file such as parse success rates for that language and average
parse speeds. A BNF-like grammar for that language is also
viewable, with frequency counts.

For many languages such as C, PL/I and COBOL, parsing is
sometimes not possible in a single pass. We have a pre-
processor available to resolve macros. Generally, not all
macros need to be expanded, so controls are available to
choose which macros to expand and which to leave intact.

10 Future Work
We plan to create an open-source repository for Programmars
as well as an API for parsing programs over the web.

Work has already begun on connecting variable references to
their definitions. In some cases, this can be done while
parsing, but in many cases such connections must be done in a
separate step because they depend on successfully parsing
other files.

Ultimately, this work is intended to be helpful in application
modernization, especially from legacy programming
languages to more modern languages.

11 Conclusion
The Programmar approach builds on top of traditional parsing
technologies. It greatly facilitates scalability and cross-
language processing, and it is also context-sensitive (for

terminal nodes). As of this writing, several dozen
programming languages have Programmars built for them,
with varying degrees of completeness. These Programmars
have been used to parse millions of lines of code. A patent is
pending on this technique.

12 References
[1] C. Preimesberger. Updating Legacy IT Systems While
Mitigating Risks: 10 Best Practices, eWeek, Mar. 19, 2014, 7.

[2] R.L. Mitchell, M. Keefe, The COBOL Brain Drain,
Computerworld, Vol. 46, Issue 10, May 2012, 18-25.

[3] A.J. McAllister, Automation-Enabled Code Conversion,
Proceedings SERP ’10: International Conference on Software
Engineering Research and Practice, July 2010, 11-17.

[4] Modern Systems: COBOL Conversion and Migration,
http://www.ateras.com/solutions/legacy-migration/cobol-
migration.aspx

[5] Semantic Designs: COBOL Migration,
http://www.semdesigns.com/Products/Services/COBOLMigra
tion.html

[6] MSS International: COBOL to Java Conversion,
http://www.mssint.com/sites/default/files/MSS-Cobol-to Java-
conversion.pdf

[7] RES – A Pure Java Open Source COBOL To Java
Translator, http://opencobol2java.sourceforge.net

[8] eranea: Modernize your core IT system toward Java,
Web, Linux, http://www.eranea.com

[9] S.C. Johnson, Yacc: Yet Another Compiler-Compiler,
AT&T Bell Laboratories, 1975.

[10] J.R. Levine, T. Mason, & D. Brown Lex & Yacc,
O’Reilly & Associates, 1992.

[11] T.A.Wagner, S.L. Graham, Incremental Analysis of Real
Programming Languages, Proceedings of the ACM
Conference on Programming Language Design and
Implementation, 1997, 31–43.

[12] D. Jackson, M. Rinard, Software analysis: A roadmap,
Conference on The Future of Software Engineering, 2000,
135–145.

[13] Z.P. Fry, D. Shepherd, E. Hill, L. Pollock, K. Vijay-
Shanker, Analysing source code: looking for useful verb–
direct object pairs in all the right places, IET Software, Vol. 2,
Issue 1, Feb. 2008, 27-36.

[14] I.R. Forman, N. Forman, Java Reflection in Action,
Manning Publications, 2004.

[15] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition), Addison
Wesley, 2006.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 131

