
Toward Effective Management of Large-Scale Software
Andrew J. McAllister, PhD
Faculty of Computer Science
University of New Brunswick

Fredericton, NB Canada E3B 5A3
andrewm@unb.ca

 Steven A. O’Hara, PhD
Eagle Legacy Modernization, LLC

702 Southwick Avenue
Grovetown, GA 30813

steve@eaglegacy.com

ABSTRACT
This paper outlines challenges the authors have faced over decades
of industrial experience with large-scale software analysis and
maintenance projects (especially legacy modernization) for
multiple organizations where millions of lines of source code are
involved. Such projects require large teams cooperating on parsing,
analyzing, and manipulating source code. In this context the use of
traditional parsing techniques based on context-free grammars has
proven problematic. We present the Programmar API, a recently
developed parsing approach designed to overcome these problems.
This paper describes the industrial experiences that led to our R&D
activities. The Programmar approach is designed to enable large
teams to effectively extract complete, accurate, up-to-date
information from application source code, and to provide this
information as the basis for a wide variety of software management
tools and activities. We present a framework that relates various
types of such activities, and describe a vision for how the
Programmar approach can provide significant benefits for the
software industry in the future via an open-source distribution
approach. This paper is intended to serve as an example of how
challenges faced by industry can stimulate research, and as a
catalyst for discussion of industry needs and potential future
research directions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – corrections, documentation, enhancement,
restructuring, reverse engineering, and reengineering.

D.3.4 [Programming Languages]: Processors – parsing.

General Terms
Languages, Documentation.

Keywords
Post-production software management, source code parsing, legacy
modernization, reverse engineering.

1. SOFTWARE MANAGEMENT
The passage of time is often an unkind influence when it comes to
retaining the value of software. Business needs change.

Programming languages and development environments evolve and
new ones are introduced. Organizations revise their standards for
application architectures and programming styles. Long series of
maintenance updates occur, often by a sequence of developers with
differing approaches, inconsistent skill levels, and varying depths
of understanding of the software architecture and functional
requirements. Such updates increase overall application complexity
and can introduce bugs, dependencies, and inconsistent
programming styles (e.g. Chapter 14 in [1]). This can result in
brittle code that is difficult to change without introducing new
errors. Documentation created when the software was originally
developed becomes out-of-date, less informative, and even worse,
potentially misleading. Institutional knowledge about software
degrades as personnel change jobs.

Another way of thinking of this is that (a) the quality and
completeness of organizational knowledge about software can
erode over time, while (b) the pressure to update various
characteristics of the software tends to increase over time. Both
observations (a) and (b) lead to the need to extract information
from source code, improving the ability to answer questions about
the code, while observation (b) leads to the need to perform various
actions on the software.

In this light, we define Post-Production Software Management
(PPSM) to mean: Extracting information from software that has
been successfully compiled and executed, and using this
information to guide actions that retain and enhance the value of
the software to the organization.

We consider PPSM to be more effective when it can be achieved
more quickly (for example, by increasing the ease with which tasks
can be performed), with reduced cost (which in the software
engineering world typically translates into reduced person-days of
effort required), and/or with higher quality of results.

1.1 Motivating Example from Industry
As an example of a situation where we have seen PPSM to be
immensely challenging, consider the experience of the authors
working for several years for a legacy modernization service
provider. One author was the Chief Technology Officer, the other a
Vice President. Both authors had responsibilities for delivery of
services to clients, as well as significant roles in leading the R&D
activities of the company. In this context we worked directly with
dozens of public- and private-sector organizations worldwide with
multi-million-line software holdings, including in government,
banking, military, educational, and other sectors.

In working with these clients, we undertook tasks such as the
following:
• Document the end-to-end data flows for this (set of)

application(s), including flows that cross the boundaries of
various languages and technologies. (e.g. [2])

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SER&IP'16, May 17 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4170-7/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2897022.2897028

2016 3rd International Workshop on Software Engineering Research and Industrial Practice

 16

• Identify any dead source code. (e.g. [3, 4])
• Identify and remove all source code clones or near clones. [5]
• Update system and user documentation to be consistent with

updated application functionality; [6]
• Transform an application from one set of programming

languages to another, usually from legacy languages to a modern
technology stack. [7] As part of this task:
o Redesign the database to a more modern platform, and update

all database access actions accordingly;
o Re-architect the entire application to a modern n-tier

architecture; (e.g. [8])
o Retain all code documentation in place; and
o Produce high quality source code that is maintainable, which

is critical for retaining the future value of the application.

Our clients consistently reported significant difficulties when they
attempted (or contemplated attempting) these types of activities on
their own large-scale software holdings. It is a relatively simple
matter if there is a need to re-document and/or re-write an
application containing only a few thousand lines of code. Up the
ante, however, to several million lines of code and PPSM becomes
technically challenging, time-consuming, and expensive. Even
maintenance efforts to enhance and repair application functionality
can be made more difficult due to the sheer size and complexity of
the code base. [9]

Our company utilized a partly automated, partly manual process for
conducting these types of PPSM projects. We found that fully
automated solutions tended to produce poor quality results, and the
sheer volume of work to be accomplished tended to overwhelm
strictly manual efforts. Significant automation was necessary if
projects were to be completed within reasonable timeframes and in
a cost-effective manner.

We also found that virtually every project for a new client required
the development of new automated functionality. Even if a new
project shared the same characteristics as a previous effort (for
example, transforming COBOL to Java), each situation presented
unique characteristics that required significant custom
enhancements to code analysis and generation functionality. For
instance, existing applications from different organizations present
different coding styles, application architectures, as well as
language / environment versions. Moreover, the target results
invariably differed, for example by desiring specific user interface
or Service-Oriented Architecture (SOA) characteristics.

A fundamental requirement for introducing automation into such
efforts is the ability to parse source code. Parsing produces accurate
and complete data describing the structure and contents of the code.
We organized our project teams into multiple groups. One group of
software engineers was in charge of parsing the source code, while
other groups used the data produced from parsing to accomplish
subsequent processing tasks.

We generated parsers based on Context-Free Grammars (CFGs),
similar to the widely used Yet-Another-Compiler-Compiler
(YACC) [10]. A CFG is a declarative description of the syntax of a
specific programming language. This parsing process relies on a
separate token pre-processor (typically LEX, the Lexical Analyzer
[11]) and generates Abstract Syntax Trees (ASTs). The generated
ASTs are then passed along to teams of developers responsible for
creating analysis and transformation tools. Such tools traverse
ASTs to search for patterns of sub-trees related to data flow, extract

information from those sub-trees, and create a metadata repository
with that information.

We were able to achieve success using this approach, however the
process also presented significant challenges, as follows:

1.1.1 CFGs Are Dynamic: Our initial expectation related to
parsing with CFGs was that the language definitions were static, so
once a CFG was either located or developed, it would also tend to
remain the same throughout the project. This turned out to be far
from the truth. This is because a given language can be represented
with many different CFG versions, which produce ASTs with
different characteristics. The downstream teams of tool writers
tended to run into issues with the ASTs, which might be outright
errors, or simply suggestions for how AST structure should be
improved (by altering the CFG) to make ASTs easier to work with.
As a result CFGs tended to undergo a steady stream of revisions
throughout the project.

1.1.2 CFGs Serve Different Purposes: CFGs developed for use
with code analysis tools have a different job than those developed
for other purposes such as compilers and interpreters. With a
compiler, if a program’s source code does not successfully parse,
then the programmer must change the source code. With analysis
and transformation tools the assumption is that all program source
code has previously been compiled and executed. If a program’s
source code does not successfully parse, then the grammar must be
revised, or the program is incomplete / in-development / etc. Also,
the job of the grammar is only to correctly identify source code
structure and contents; there is no need to reject errors. These
differences may seem subtle, but they contribute significantly to the
tendency for grammars to be updated on an ongoing basis during
large-scale PPSM projects.

1.1.3 CFG Updates Were Difficult to Detect and Expensive: As
our teams made a series of grammar updates and AST structures
changed, it was necessary for the downstream tool writers to revise
their tools so they continued to correctly interpret the ASTs and
produce accurate results. Unfortunately the constant stream of CFG
updates represented a significant communication challenge.

It turned out to be all too common for tool writers to be unaware of
all AST changes, which meant their tools no longer worked
properly. Sometimes this created execution errors, which was
actually the best case scenario, since that forced tool developers to
debug the issues and fix the problems. The less desirable situation
was when tools continued to execute, with the developers unaware
that results were no longer valid. This is one of the main reasons
why we found that an analysis approach based on CFGs does not
scale well for large-scale software. As tool developer team size
scales up, undetected tool errors due to CFG updates tend to
become more and more common. Considerable effort and time can
be wasted as other developers unknowingly work with invalid
intermediate results. The use of CFG-based parsing thus had a
direct, negative impact on project costs and timeframes.

1.1.4 ASTs Required Considerable Searching: AST nodes
contain names but no links for navigation to related nodes. For
example, an AST node representing a call to a Java method
includes the name of that method. That node’s subtree would
include information about the arguments to be passed to the
method’s parameters. Assume a team is creating a tool to trace the
flow of information through method calls. When the tool
encounters a node for a method call, it is necessary then to search
somewhere else for information about the definition of that method.
That ‘somewhere else’ might be elsewhere in the AST, or possibly

17

in look-up tables that developers have created to keep track of
commonly referenced information such as variable and method
definitions. Developing this type of search functionality within
source code analysis tools turned out to consume an unexpectedly
high amount of effort, time, and budget.

1.1.5 ASTs Are Inconsistent Across Languages: Large-scale
applications tend to involve multiple languages and notations, all of
which need to be parsed. CFGs tend to be developed for individual
programming notations, which means we frequently generated
separate ASTs with entirely different structures and element names
for different parts of a client’s application. Downstream tool
developers were forced to process multiple unconnected ASTs, and
to make sense of how information in one type of AST was related
to information in other types of ASTs. This consumed considerable
time and effort. The ability of tool writers to connect references
across different languages was partially dependent on the skill of
CFG developers to make the interconnections obvious. Again, the
decision to parse using CFGs resulted in hidden costs we had not
anticipated.

1.1.6 Parsing Legacy Programming Languages: Context Free
Grammars are insufficient to interpret the syntactic rules of some
programming languages. This necessitated messy and expensive
workarounds, such as source code pre- or post-processing. In many
cases this was because the languages were created before current
parsing and compiling techniques became widely used. Examples
we encountered where CFGs were insufficient include:

• Column-sensitive aspects of COBOL and the Report Program
Generator (RPG): Comments in COBOL are identified by
having a character in column 7. The identity and meaning of
many RPG elements are determined by the column in which they
appear.

• Interpretation of COBOL level numbers: The relative value of
two consecutive level numbers determines whether the second
clause should appear in the AST either (a) at the same level as
the preceding clause, (b) as a sub-tree of the preceding clause, or
(c) at the same level as some earlier clause.

• Context-sensitive tokenization in Algol: The sequence A-B
should be recognized as a subtraction between two variables in
some sections of an Algol program, whereas in other parts of the
same program this should be recognized as a single hyphenated
identifier.

• Context-sensitive parsing in Unisys Mapper: An integer number
following an identifier must be parsed differently depending on
what information the identifier represents. The program element
represented by the number cannot be identified by the syntax
alone.

1.2 An Improved Approach
After the authors left the aforementioned legacy modernization
firm, Eagle Legacy Modernization was formed with the goal of
developing an improved alternative to CFGs for parsing within the
context of PPSM projects. The result is the Programmar approach.
An earlier paper provides a technical overview of how parsing with
Programmars is accomplished [12]. The focus of this paper is on
the value that Programmars can provide to the software industry.

The paper is organized as follows. Section 2 provides a brief
overview of a new approach for parsing software called the
Programmar technique, which is specifically designed to provide
the basis for effective PPSM. Readers desiring more technical
detail can find it in [12]. In Section 3 we describe a number of ways
that using Programmars for large-scale PPSM overcomes the

challenges described in Section 1.1. Section 4 presents a framework
that describes the various types of activities organizations typically
undertake to accomplish PPSM. We use this framework to show
how the Programmar approach relates to the challenges faced by
the software industry, and how our research results will be provided
to industry members. The final section concludes the paper.

2. PARSING WITH PROGRAMMARS
The term ‘Programmar’ is derived by combining ‘program’ and
‘grammar,’ and refers to a new approach for parsing source code
[12]. The Programmar approach is specifically designed to
overcome the challenges described in Section 1.1.

A Programmar is a set of Java classes that contain all the rules and
logic required to parse source code for one or more programming
languages. All of the elements needed to describe the computer
programming language(s) to be parsed are embedded in the Java
classes as fields, inner classes, and methods. The Programmar API
provides the parser functionality required to parse source code
using Programmars.

Instead of ASTs, parsing creates instances of the classes defined in
the Programmar. Collectively these instances form a Programmar
Semantic Tree, or PST. The PSTs are currently persisted as XML
files or as Java programs. PSTs are an extension of ASTs that
include semantic information, such as cross references.

Programmars are similar in some respects to CFGs. This is
intended to promote familiarity for those experienced in working
with existing parsing approaches. With traditional approaches,
program elements are separated into terminals and non-terminals
[13]. The same is true with Programmars. Terminals represent
textual elements encountered in the source code being parsed, such
as string literals, comments, numbers, keywords, identifiers, and
punctuation. Non-terminals are more complex program elements
such as statements, statement blocks, methods, classes, or lists of
other program elements. Non-terminals are formed by combining
one or more other elements.

With traditional parsing approaches, the rules for terminals are
often defined using regular expressions [11]. With Programmars,
Java methods are used for parsing terminals. This has the
advantages that:

• The full definition of the programming language to be parsed is
included within the Programmar, including terminals and non-
terminals. There is no need for a token pre-processing step or for
separate specifications;

• The full expressiveness of a general purpose programming
language (Java) can be used for defining terminals. This includes
the possible use of regular expressions;

• The Programmar API pre-defines several of the most common
types of literals. Examples include TerminalLiteralToken,
TerminalNumberToken, and TerminalPunctuationToken. We
have found this can save considerable time and effort, since
specifying and debugging either regular expression or CFG-like
rules for floating point numbers or string literals can be
challenging and time-consuming; and

• The Programmar API also includes special pre-defined terminals
to ease the task to creating custom definitions for special cases.
For example, Python has very strict rules for indentation. The
Programmar API defines a Start-of-line terminal type that can be
used to handle the indentation logic correctly.

18

2.1 Sample Programmar
Non-terminals within Programmars are defined using one class for
each non-terminal. Each of these classes must extend one of several
abstract non-terminal classes built-in to the Programmar API. As an
example, consider a traditional grammar for a simple language L as
shown in Figure 1.

 <L> ::= <P>+;
 <P> ::= <X> [<Y>];
 <X> ::= 'a' | 'b';
 <Y> ::= 'c' | 'd' | 'e';

Figure 1: Traditional Grammar

Figure 1 describes a language made up of single-letter keywords
delimited by white space (e.g. blanks). A source file consistent with
Figure 1 consists of one or more instances of the non-terminal P,
each of which is comprised of a non-terminal X, optionally
followed immediately by a non-terminal Y. An equivalent
Programmar class for P is presented in Figure 2.

public class P extends TokenSequence {
 public KeywordChoice x
 = new KeywordChoice("a", "b");
 public @OPT KeywordChoice y
 = new KeywordChoice("c", "d", "e");
}

Figure 2: Programmar Class Example

The abstract TokenSequence class is built-in to the Programmar
API, and provides Programmar writers with a convenient way to
specify sequences of elements. Similarly, the built-in
KeywordChoice class handles the common need to specify a set of
keywords that can appear as a given element in a language. The
notation @OPT is used to specify optional elements.

Each Programmar requires a top-level class that extends Language,
such as that shown in Figure 3. The TokenList<> class represents a
list of one or more elements.

public class Letters_Program extends Language {
 public TokenList<P> pList;
}

Figure 3: Top-level Programmar Class Example

The Programmar parsing process creates instances of the types of
classes shown in Figures 2 and 3. Collectively these instances form
a PST, which can be stored as an XML file or as Java code that
regenerates the PST.

As an example, assume the Programmar provided above is used to
parse the following text: a b c

The Programmar parser generates the XML in Figure 4. PSTs in
XML form can be used by tools that perform subsequent analysis
and processing tasks. ("T" means Token, "TT" is Token Type, "N"
is Name, and "V" is Value.)

The central idea behind parsing with Programmars is to use
reflection [14] to fill in the PST with the results of the parsing
process. Reflection is essentially the ability of the Programmar
parser to examine Programmar source code and use this knowledge
to make decisions about how the parse should proceed. The parser
uses this strategy to infer grammar rules from the Programmar
classes. This property of Eagle Legacy’s proprietary parser is what
enables Programmars to be written in a declarative (rather than
procedural) form.

Instances are named in the Programmars, which results in named
PST entries in Figure 4. This is unlike an AST where elements are

<Program Language="L" Tokens="7">
 <T TT="Letters_Program">
 <T N="pList" TT="List">
 <T TT="P">
 <T N="x" TT="KeywordChoice" V="a"/>
 </T>
 <T TT="P">
 <T N="x" TT="KeywordChoice" V="b"/>
 <T N="y" TT="KeywordChoice" V="c"/>
 </T>
 </T>
 </T>
</Program>

Figure 4: XML Representation of a PST

anonymous. This means specific instances can be referred to from
elsewhere in the Programmar or in associated source code analysis
programs. This turns out to be extremely valuable when analyzing
source code.

The Programmar technique has been used to successfully parse
millions of lines of code written in dozens of computer
programming languages such as Assembler, Fortran, PL/I, RPG,
Java, Visual Basic, Delphi, DOS, SQL, Python, C++, and many
more. For example, Figure 5 shows a summary of nearly seven
million lines of successfully parsed industrially-sourced source
code across multiple projects. This parsing took place during the
development of the Programmar API, while developing
Programmars for several widely used languages. The unparsed C
files are due to missing macro definitions, while the unparsed
HTML & Javascript files are due to embedded Django.

2.2 Comparison to Other Tools
In terms of equivalence with other parsing approaches, the
Programmar parser uses a top-down approach with no look-ahead
(i.e., it is an LL(0) grammar [13]). No token pre-processor is
required.

The use of a Programmar differs from a Recursive Descent Parser
(RDP) [13] because Programmars use a declarative way of
representing computer languages, as described above. Other than
terminal nodes, there is no logic required in a Programmar. An
RDP, in contrast, uses programming logic for matching each node
in the grammar.

Tools such as ctags, opengrok, lxr, and doxygen (see for example
[15]) are also used for source code analysis tasks, but serve a
fundamentally different purpose as compared with a full parsing
approach such as with Programmars. These tools rely on regular
expressions to help locate various syntactic elements within source
code files, which means their expressive power and ability to fully
parse source code files is quite limited when compared with CFGs,
let alone in comparison to context-sensitive Programmars. These
tools cannot provide the complete parsing results required for large-
scale PPSM.

3. ADDRESSING THE CHALLENGES
Although Programmars tend to be slightly more verbose than
CFGs, the Programmar approach is designed to enable faster and
more cost-effective development of PPSM functionality with a
reduced likelihood of errors in the results. This is accomplished by
addressing the challenges discussed in Section 1.1 as follows. A
similar project approach as described above is assumed. One team
of developers is responsible for Programmar development, which
typically involves updates to the Programmars throughout a project.
Other teams write tools to traverse PSTs and perform various
analysis and processing tasks.

19

Figure 5: Sample Parsing Summary Across Languages

3.1 Impact of Programmar Changes
In the Programmar approach, downstream impact of a change to
any part a Programmar will be detected immediately, because the
Java Programmar code will be an integral part of any Java tools
written for downstream processing. The combined code will not
successfully compile unless and until the tool code is fully
consistent with the Programmar. If somebody were to change the
name of an element in a Programmar, all references to that name
within the tool code would become invalid until they were updated
to be consistent with the changed element. Each PST has a version
number embedded within it, so it is possible to detect out-of-date
PST's. This allows projects to scale to much more significant
levels. It is now possible to have dozens of developers working on
the same project, processing many computer languages, with much
reduced impact of effort and time delays associated with
downstream detection of PST structure changes. This addresses the
concerns described in Sections 1.1.1, 1.1.2, and 1.1.3.

3.2 Facilitating Cross References
As mentioned in Section 1.1.4, ASTs document references from
one program element to another by naming the element. For
example, an AST node for a procedure call merely names the
procedure. There is no further information attached to it. If you
write a tool to analyze or transform such procedure calls, you will
have to search the rest of the AST to find out what is in that
procedure. With the PST version, the procedure call instance
contains within it a reference to the actual definition of that called
procedure, including all of its parameters, return type, statements,
etc. This greatly simplifies the task of writing analysis and
conversion tools. Some of the work in connecting references to
definitions is accomplished as part of the parsing process, which
lessens the effort required to create tools for subsequent processing
tasks. This addresses the concerns described in Section 1.1.4.

3.3 Multiple Languages Concurrently
Some computer languages, such as HTML for web pages, include
other languages inside of them, such as Javascript, CSS or PHP in
the case of HTML. Using CFGs, options include (a) attempting to
separate and parse the languages separately (which is far from
ideal), or (b) creating a complex, monolithic CFG covering all sub-
languages. A Programmar can draw upon the expressive powers of
Java. With Java encapsulation, the main Programmar (e.g. HTML)
can simply reference other Programmars (e.g. Javascript). This
addresses the concerns discussed in Section 1.1.5.

Additional advantages arise when considering multiple
programming languages that include similarities, or those for which
multiple language variants exist. A traditional CFG is typically
built to describe just one programming language. With the
Programmar approach, the components common to all variations of
a particular programming language can be placed into an abstract
Programmar class. For example, there are major variations of
languages like RPG. A File specification has the same meaning
across each variation, so an abstract RPGFile class can be used to
define the common elements. The minor syntactic differences
between RPG variations can then be represented by concrete
classes that extend the abstract class.

Variations on a computer programming language can also be
handled using inheritance. For example, there are both fixed width
(80 column) and free-format COBOL programs. Their meanings
are virtually identical, but the syntax is different. With a traditional
grammar, the whole grammar might be copied and edited for each
variation. With Programmar inheritance, only the local changes
need to be considered and the rest can be inherited from the main
Programmar.

3.4 Context-Sensitive Processing
Any Java method written to parse a particular type of terminal node
has access to the current context in which an instance of that
terminal is encountered within the source code being parsed. This
Java method can examine any information relevant to
understanding the correct meaning of that terminal. For example, a
COBOL level number can be correctly interpreted by examining
preceding level numbers in the partially completed PST. When
parsing a Java program that involves method overriding or
overloading, method calls can be resolved during parsing by
examining and comparing arguments and parameters. This enables
method call nodes within the resultant PST to include references to
the appropriate method definitions. This addresses the concerns
discussed in Section 1.1.6.

20

3.5 Enabling Shared Processing
Most terminal nodes are somewhat similar across programming
languages. Generic processors for numbers, literal strings,
punctuation, etc. are all made available by the Programmar API to
use when writing Programmars. For example, parsing functionality
for hexadecimal (hex, base 16) numbers can generally be
implemented in just a few lines of Java by extending the generic
hex number processor, and simply declaring their hex prefix or
suffix. Comments, floating point numbers and string literals are
simpler to implement in a Programmar than a traditional grammar,
because they can utilize the built-in generic methods. An abstract
Syntax class aids in managing the nuances of programming
languages, such as case sensitivity and line continuations. An
abstract Project class helps to decide which files to process, how to
identify languages, how to override base Programmar classes, and
other related functionality.

4. A FRAMEWORK FOR THE FUTURE
One goal of our research is to provide building blocks so
organizations can perform effective large-scale PPSM. Figure 6
shows the hierarchy of functionality involved in achieving this
goal.

Figure 6: A PPSM Framework

4.1 Level 1: Parse
At the tip of the pyramid in level 1 is the ability to parse large-scale
software repositories, thus creating an accurate, complete, detailed,
up-to-date, and searchable understanding of an organization’s
source code. The Programmar approach provides this information
in the form of PSTs.

We have developed a Programmar parser that produces PSTs as
well as tracing output parsing process, both in plain text and html.
This is available as an API for parsing programs over the web.
Other functionality directly related to the parsing level in Figure 6
that has already been developed includes:

• Sample Programmars for a wide variety of modern and legacy
programming languages, which have been used to successfully
parse millions of lines of source code in those languages;

• A parsing progress monitor that shows what percentage of
source code files were successfully parsed, details about any
failed parsing attempts, as well as a variety of statistics for
successfully parsed files such as number of lines, size of the

resulting parse output, frequency counts showing how many
instances of each Programmar rule were identified, etc.;

• Given a Programmar, a generator to automatically create an
equivalent context free grammar. Note that full equivalence is
not possible in cases where the Programmar performs context-
sensitive processing. Also, terminal nodes defined in a
Programmar are not converted by this tool;

• A pretty printer to regenerate a version of the original program
from the PST, but in a canonical form. Indentation can be fixed,
extra spaces eliminated, capitalization standardized, etc.
Programmar element annotations are available to assist with the
output formatting, such as @NEWLINE, @NOSPACE,
@INDENT, and @OUTDENT;

• A program inspector that generates an html report for a parsed
program, with color codes for all the different kinds of terminal
nodes;

• A visual debugger for Programmars with commands like Step-in,
Step-over, and Continue; and

• A macro processor for languages like C, PL/I and COBOL.
Generally, not all macros need to be expanded, so controls are
available to choose which macros to expand and which to leave
intact.

4.2 Level 2: Analyze
Level 2 in Figure 6 includes a wide variety of functionality to
extract various types of useful information from an organization’s
software holdings. Examples include but are certainly not limited to
the following, all of which make direct use of PSTs:

• Fundamental to most analysis tools is a strongly connected
network of references and definitions. For example, we have
begun work on tools to connect variable references to their
definitions. Such references can be within a single source code
file, might span multiple such files, or can even be between
multiple programming languages. Some languages include
features like reflection and runtime compilation that complicate
the process of identifying connections between program
elements, so in some cases analysis tools must be capable of
marking references as indeterminate;

• Using program-specific information to feed into various types of
application documentation, such as user manuals and technical
documentation;

• Extraction of various types of source code metrics, such as
complexity or quality measurements; and

• Development of software search / query dashboards to enable IT
workers to ask questions such as the following:
o Where are the most exceptions being thrown?
o Where is the most CPU time spent?
o Which applications are never (or rarely) used?
o Where do we have obsolete or deprecated code?

Beyond the parsing level, we recognize that much of the
functionality in level 2 and onward in Figure 6 is likely to be
organization-specific. Thus our strategy is to provide as much
functionality as possible in an open source format to the
community at large. This is already in place for sample
Programmars at github.com/oharasteve/eagle. Eagle Legacy will
provide an initial set of Programmars for commonly used languages
and hope the community at large will create new Programmars,
modify existing Programmars, and build associated PPSM tools as

21

organization-specific projects proceed. It is anticipated that there
will be language-specific champions in the open source community
who will monitor and control Programmar changes for consistency
and accuracy.

4.3 Level 3: Change
Level 3 represents tasks that make updates to application software,
including:

• Software maintenance updates, whether for correcting
discovered problems, adding desired functionality, adapting to
different environments, improving software quality, or proactive
changes to prevent potential future issues. Any of these forms of
software maintenance can be enhanced by having a thorough and
up-to-date understanding of the source code as provided by
levels 1 and 2; and

• Transforming software to meet new needs, which might mean
changing to a different set of programming languages and/or a
new technology stack, or changes to achieve consistency with
programming or architectural standards. Examples include
migrating from COBOL to Java or from a siloed application to a
service-oriented architecture. Our experience with Automation-
Enabled Modernization (AEM) shows the value of information
from levels 1 and 2 in performing such transformations [8].

4.4 Level 4: Decide
Level 4 represents decision making processes such as effort / cost
estimation and cost / benefit analysis for software projects, project
planning, proposal development, and choosing between options
(e.g. how to integrate software holdings following a corporate
acquisition). Such processes are highly complex and do not usually
make direct use of parsing results. There is, however, often a
residual impact. For example, project planning relies on effort
estimates, which are typically more accurate when based on up-to-
date software metrics and other information obtained via level 2.

It is our vision that efforts at all four levels across a variety of
organizations will begin to show cumulative effects in the near to
medium future. We anticipate widespread recognition that PPSM
poses challenges different from those that organizations face when
developing software to begin with. With that in mind, it makes
sense that programming languages as well as their development and
runtime environments could be designed with the effectiveness of
PPSM in mind. Imagine new releases of Java or .NET with vendor-
supplied Programmars provided as an integral part of the release.

5. CONCLUSION
This paper outlines how the Programmar approach addresses
current challenges with post-production large-scale software
management and paves the way for an industry-wide solution to
evolve via the open source community. Our ultimate goal is to
grow to support organizations with ultra-large-scale software
holdings likely to be in the billion lines-of-code range, such as the
US government, the US military, Apple, Google, Microsoft,
Yahoo, and others. These organizations face particular challenges
due to the size and complexity of their software. In such
environments we have observed the following:

• The people who created the software to be managed are often no
longer available. Large organizations tend to see significant staff
mobility and turnover. This underscores the importance of
effective software management capabilities; and

• Quite a variety of different operating systems, databases,
programming languages, and other technology stack components
tend to be in the mix. This requires large organizations to build
bridges between applications created with different technologies,
which means overall complexity increases at an incredible rate.
The PPSM challenges are increased significantly.

These factors tie in directly to the challenges posed with CFG-
based software processing as described in Section 1.1, as well as
the advantages offered by the Programmar approach as described in
Section 3. We are highly optimistic that the Programmar approach
will enable organizations with millions and even billions of lines of
source code to more effectively manage their software.

6. REFERENCES
[1] H. van Vliet, Software Engineering: Principles and Practice,

3rd Edition, Wiley, 2008.

[2] F. Li, A. Pop & A. Cohen, Automatic Extraction of Coarse-
Grained Data-Flow Threads from Imperative Programs, IEEE
Micro, Vol. 32, No. 4, July 2012, 19-31.

[3] É. Payet & F. Spoto, Static analysis of Android programs,
Information and Software Technology, Vol. 54, No. 11, Nov.
2012, 1192-1201.

[4] E. Arisholm, L.C. Briand & A. Føyen, Dynamic Coupling
Measurement for Object-Oriented Software, IEEE
Transactions on Software Engineering, Vol. 30, No. 8, Aug.
2004, 491-506.

[5] D. Rattan, R. Bhatia & M. Singh, Software clone detection: A
systematic review, Information and Software Technology,
Vol. 55, No. 7, July 2013, 1165-1199.

[6] G. Canfora, M. Di Penta & L. Cerulo, Achievements and
Challenges in Software Reverse Engineering,
Communications of the ACM, Vol. 54, No. 4, Apr. 2011, 142-
151.

[7] A.J. McAllister, Automation-Enabled Code Conversion,
Proceedings SERP ’10: International Conference on Software
Engineering Research and Practice, Las Vegas, NV, July
2010, 11-17.

[8] L. Shklar & R. Rosen, Web Application Architecture:
Principles, Protocols and Practices, 2nd Edition, Wiley, 2009.

[9] G. Booch, The large-scale structure of software-intensive
systems, Interface Focus, Vol. 2, No. 1, Feb. 2012, 91-100.

[10] S.C. Johnson, Yacc: Yet Another Compiler-Compiler, AT&T
Bell Laboratories, 1975.

[11] J.R. Levine, T. Mason, & D. Brown Lex & Yacc, O’Reilly &
Associates, 1992.

[12] S.A. O’Hara, Programmars: A Revolution in Computer
Language Parsing, SERP ’15: International Conference on
Software Engineering Research and Practice, Las Vegas, NV,
July 2015, 125-131.

[13] A.V. Aho, M.S. Lam, R. Sethi & J.D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition), Addison
Wesley, 2006.

[14] I.R. Forman & N. Forman, Java Reflection in Action,
Manning Publications, 2004.

[15] ctags Linux man page: http://linux.die.net/man/1/ctags

22

