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ABSTRACT 
This paper outlines challenges the authors have faced over decades 
of industrial experience with large-scale software analysis and 
maintenance projects (especially legacy modernization) for 
multiple organizations where millions of lines of source code are 
involved. Such projects require large teams cooperating on parsing, 
analyzing, and manipulating source code. In this context the use of 
traditional parsing techniques based on context-free grammars has 
proven problematic. We present the Programmar API, a recently 
developed parsing approach designed to overcome these problems. 
This paper describes the industrial experiences that led to our R&D 
activities. The Programmar approach is designed to enable large 
teams to effectively extract complete, accurate, up-to-date 
information from application source code, and to provide this 
information as the basis for a wide variety of software management 
tools and activities. We present a framework that relates various 
types of such activities, and describe a vision for how the 
Programmar approach can provide significant benefits for the 
software industry in the future via an open-source distribution 
approach. This paper is intended to serve as an example of how 
challenges faced by industry can stimulate research, and as a 
catalyst for discussion of industry needs and potential future 
research directions. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – corrections, documentation, enhancement, 
restructuring, reverse engineering, and reengineering.  

D.3.4 [Programming Languages]: Processors – parsing.  

General Terms 
Languages, Documentation. 

Keywords 
Post-production software management, source code parsing, legacy 
modernization, reverse engineering. 

1. SOFTWARE MANAGEMENT 
The passage of time is often an unkind influence when it comes to 
retaining the value of software. Business needs change. 

Programming languages and development environments evolve and 
new ones are introduced. Organizations revise their standards for 
application architectures and programming styles. Long series of 
maintenance updates occur, often by a sequence of developers with 
differing approaches, inconsistent skill levels, and varying depths 
of understanding of the software architecture and functional 
requirements. Such updates increase overall application complexity 
and can introduce bugs, dependencies, and inconsistent 
programming styles (e.g. Chapter 14 in [1]). This can result in 
brittle code that is difficult to change without introducing new 
errors. Documentation created when the software was originally 
developed becomes out-of-date, less informative, and even worse, 
potentially misleading. Institutional knowledge about software 
degrades as personnel change jobs. 

Another way of thinking of this is that (a) the quality and 
completeness of organizational knowledge about software can 
erode over time, while (b) the pressure to update various 
characteristics of the software tends to increase over time. Both 
observations (a) and (b) lead to the need to extract information 
from source code, improving the ability to answer questions about 
the code, while observation (b) leads to the need to perform various 
actions on the software. 

In this light, we define Post-Production Software Management 
(PPSM) to mean: Extracting information from software that has 
been successfully compiled and executed, and using this 
information to guide actions that retain and enhance the value of 
the software to the organization. 

We consider PPSM to be more effective when it can be achieved 
more quickly (for example, by increasing the ease with which tasks 
can be performed), with reduced cost (which in the software 
engineering world typically translates into reduced person-days of 
effort required), and/or with higher quality of results. 

1.1 Motivating Example from Industry 
As an example of a situation where we have seen PPSM to be 
immensely challenging, consider the experience of the authors 
working for several years for a legacy modernization service 
provider. One author was the Chief Technology Officer, the other a 
Vice President. Both authors had responsibilities for delivery of 
services to clients, as well as significant roles in leading the R&D 
activities of the company. In this context we worked directly with 
dozens of public- and private-sector organizations worldwide with 
multi-million-line software holdings, including in government, 
banking, military, educational, and other sectors. 

In working with these clients, we undertook tasks such as the 
following: 
• Document the end-to-end data flows for this (set of) 

application(s), including flows that cross the boundaries of 
various languages and technologies. (e.g. [2]) 
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• Identify any dead source code. (e.g. [3, 4]) 
• Identify and remove all source code clones or near clones. [5] 
• Update system and user documentation to be consistent with 

updated application functionality; [6] 
• Transform an application from one set of programming 

languages to another, usually from legacy languages to a modern 
technology stack. [7] As part of this task: 
o Redesign the database to a more modern platform, and update 

all database access actions accordingly; 
o Re-architect the entire application to a modern n-tier 

architecture; (e.g. [8]) 
o Retain all code documentation in place; and 
o Produce high quality source code that is maintainable, which 

is critical for retaining the future value of the application. 

Our clients consistently reported significant difficulties when they 
attempted (or contemplated attempting) these types of activities on 
their own large-scale software holdings. It is a relatively simple 
matter if there is a need to re-document and/or re-write an 
application containing only a few thousand lines of code. Up the 
ante, however, to several million lines of code and PPSM becomes 
technically challenging, time-consuming, and expensive. Even 
maintenance efforts to enhance and repair application functionality 
can be made more difficult due to the sheer size and complexity of 
the code base. [9] 

Our company utilized a partly automated, partly manual process for 
conducting these types of PPSM projects. We found that fully 
automated solutions tended to produce poor quality results, and the 
sheer volume of work to be accomplished tended to overwhelm 
strictly manual efforts. Significant automation was necessary if 
projects were to be completed within reasonable timeframes and in 
a cost-effective manner. 

We also found that virtually every project for a new client required 
the development of new automated functionality. Even if a new 
project shared the same characteristics as a previous effort (for 
example, transforming COBOL to Java), each situation presented 
unique characteristics that required significant custom 
enhancements to code analysis and generation functionality. For 
instance, existing applications from different organizations present 
different coding styles, application architectures, as well as 
language / environment versions. Moreover, the target results 
invariably differed, for example by desiring specific user interface 
or Service-Oriented Architecture (SOA) characteristics. 

A fundamental requirement for introducing automation into such 
efforts is the ability to parse source code. Parsing produces accurate 
and complete data describing the structure and contents of the code. 
We organized our project teams into multiple groups. One group of 
software engineers was in charge of parsing the source code, while 
other groups used the data produced from parsing to accomplish 
subsequent processing tasks. 

We generated parsers based on Context-Free Grammars (CFGs), 
similar to the widely used Yet-Another-Compiler-Compiler 
(YACC) [10]. A CFG is a declarative description of the syntax of a 
specific programming language. This parsing process relies on a 
separate token pre-processor (typically LEX, the Lexical Analyzer 
[11]) and generates Abstract Syntax Trees (ASTs). The generated 
ASTs are then passed along to teams of developers responsible for 
creating analysis and transformation tools. Such tools traverse 
ASTs to search for patterns of sub-trees related to data flow, extract 

information from those sub-trees, and create a metadata repository 
with that information. 

We were able to achieve success using this approach, however the 
process also presented significant challenges, as follows: 

1.1.1 CFGs Are Dynamic: Our initial expectation related to 
parsing with CFGs was that the language definitions were static, so 
once a CFG was either located or developed, it would also tend to 
remain the same throughout the project. This turned out to be far 
from the truth. This is because a given language can be represented 
with many different CFG versions, which produce ASTs with 
different characteristics. The downstream teams of tool writers 
tended to run into issues with the ASTs, which might be outright 
errors, or simply suggestions for how AST structure should be 
improved (by altering the CFG) to make ASTs easier to work with. 
As a result CFGs tended to undergo a steady stream of revisions 
throughout the project. 

1.1.2 CFGs Serve Different Purposes: CFGs developed for use 
with code analysis tools have a different job than those developed 
for other purposes such as compilers and interpreters. With a 
compiler, if a program’s source code does not successfully parse, 
then the programmer must change the source code. With analysis 
and transformation tools the assumption is that all program source 
code has previously been compiled and executed. If a program’s 
source code does not successfully parse, then the grammar must be 
revised, or the program is incomplete / in-development / etc. Also, 
the job of the grammar is only to correctly identify source code 
structure and contents; there is no need to reject errors. These 
differences may seem subtle, but they contribute significantly to the 
tendency for grammars to be updated on an ongoing basis during 
large-scale PPSM projects. 

1.1.3 CFG Updates Were Difficult to Detect and Expensive: As 
our teams made a series of grammar updates and AST structures 
changed, it was necessary for the downstream tool writers to revise 
their tools so they continued to correctly interpret the ASTs and 
produce accurate results. Unfortunately the constant stream of CFG 
updates represented a significant communication challenge. 

It turned out to be all too common for tool writers to be unaware of 
all AST changes, which meant their tools no longer worked 
properly. Sometimes this created execution errors, which was 
actually the best case scenario, since that forced tool developers to 
debug the issues and fix the problems. The less desirable situation 
was when tools continued to execute, with the developers unaware 
that results were no longer valid. This is one of the main reasons 
why we found that an analysis approach based on CFGs does not 
scale well for large-scale software. As tool developer team size 
scales up, undetected tool errors due to CFG updates tend to 
become more and more common. Considerable effort and time can 
be wasted as other developers unknowingly work with invalid 
intermediate results. The use of CFG-based parsing thus had a 
direct, negative impact on project costs and timeframes. 

1.1.4 ASTs Required Considerable Searching: AST nodes 
contain names but no links for navigation to related nodes. For 
example, an AST node representing a call to a Java method 
includes the name of that method. That node’s subtree would 
include information about the arguments to be passed to the 
method’s parameters. Assume a team is creating a tool to trace the 
flow of information through method calls. When the tool 
encounters a node for a method call, it is necessary then to search 
somewhere else for information about the definition of that method. 
That ‘somewhere else’ might be elsewhere in the AST, or possibly 
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in look-up tables that developers have created to keep track of 
commonly referenced information such as variable and method 
definitions. Developing this type of search functionality within 
source code analysis tools turned out to consume an unexpectedly 
high amount of effort, time, and budget. 

1.1.5 ASTs Are Inconsistent Across Languages: Large-scale 
applications tend to involve multiple languages and notations, all of 
which need to be parsed. CFGs tend to be developed for individual 
programming notations, which means we frequently generated 
separate ASTs with entirely different structures and element names 
for different parts of a client’s application. Downstream tool 
developers were forced to process multiple unconnected ASTs, and 
to make sense of how information in one type of AST was related 
to information in other types of ASTs. This consumed considerable 
time and effort. The ability of tool writers to connect references 
across different languages was partially dependent on the skill of 
CFG developers to make the interconnections obvious. Again, the 
decision to parse using CFGs resulted in hidden costs we had not 
anticipated. 

1.1.6 Parsing Legacy Programming Languages: Context Free 
Grammars are insufficient to interpret the syntactic rules of some 
programming languages. This necessitated messy and expensive 
workarounds, such as source code pre- or post-processing. In many 
cases this was because the languages were created before current 
parsing and compiling techniques became widely used. Examples 
we encountered where CFGs were insufficient include: 

• Column-sensitive aspects of COBOL and the Report Program 
Generator (RPG): Comments in COBOL are identified by 
having a character in column 7. The identity and meaning of 
many RPG elements are determined by the column in which they 
appear. 

• Interpretation of COBOL level numbers: The relative value of 
two consecutive level numbers determines whether the second 
clause should appear in the AST either (a) at the same level as 
the preceding clause, (b) as a sub-tree of the preceding clause, or 
(c) at the same level as some earlier clause. 

• Context-sensitive tokenization in Algol: The sequence A-B 
should be recognized as a subtraction between two variables in 
some sections of an Algol program, whereas in other parts of the 
same program this should be recognized as a single hyphenated 
identifier. 

• Context-sensitive parsing in Unisys Mapper: An integer number 
following an identifier must be parsed differently depending on 
what information the identifier represents. The program element 
represented by the number cannot be identified by the syntax 
alone. 

1.2 An Improved Approach 
After the authors left the aforementioned legacy modernization 
firm, Eagle Legacy Modernization was formed with the goal of 
developing an improved alternative to CFGs for parsing within the 
context of PPSM projects. The result is the Programmar approach. 
An earlier paper provides a technical overview of how parsing with 
Programmars is accomplished [12]. The focus of this paper is on 
the value that Programmars can provide to the software industry. 

The paper is organized as follows. Section 2 provides a brief 
overview of a new approach for parsing software called the 
Programmar technique, which is specifically designed to provide 
the basis for effective PPSM. Readers desiring more technical 
detail can find it in [12]. In Section 3 we describe a number of ways 
that using Programmars for large-scale PPSM overcomes the 

challenges described in Section 1.1. Section 4 presents a framework 
that describes the various types of activities organizations typically 
undertake to accomplish PPSM. We use this framework to show 
how the Programmar approach relates to the challenges faced by 
the software industry, and how our research results will be provided 
to industry members. The final section concludes the paper. 

2. PARSING WITH PROGRAMMARS 
The term ‘Programmar’ is derived by combining ‘program’ and 
‘grammar,’ and refers to a new approach for parsing source code 
[12]. The Programmar approach is specifically designed to 
overcome the challenges described in Section 1.1. 

A Programmar is a set of Java classes that contain all the rules and 
logic required to parse source code for one or more programming 
languages. All of the elements needed to describe the computer 
programming language(s) to be parsed are embedded in the Java 
classes as fields, inner classes, and methods. The Programmar API 
provides the parser functionality required to parse source code 
using Programmars. 

Instead of ASTs, parsing creates instances of the classes defined in 
the Programmar. Collectively these instances form a Programmar 
Semantic Tree, or PST. The PSTs are currently persisted as XML 
files or as Java programs. PSTs are an extension of ASTs that 
include semantic information, such as cross references. 

Programmars are similar in some respects to CFGs. This is 
intended to promote familiarity for those experienced in working 
with existing parsing approaches. With traditional approaches, 
program elements are separated into terminals and non-terminals 
[13]. The same is true with Programmars. Terminals represent 
textual elements encountered in the source code being parsed, such 
as string literals, comments, numbers, keywords, identifiers, and 
punctuation. Non-terminals are more complex program elements 
such as statements, statement blocks, methods, classes, or lists of 
other program elements. Non-terminals are formed by combining 
one or more other elements. 

With traditional parsing approaches, the rules for terminals are 
often defined using regular expressions [11]. With Programmars, 
Java methods are used for parsing terminals. This has the 
advantages that: 

• The full definition of the programming language to be parsed is 
included within the Programmar, including terminals and non-
terminals. There is no need for a token pre-processing step or for 
separate specifications; 

• The full expressiveness of a general purpose programming 
language (Java) can be used for defining terminals. This includes 
the possible use of regular expressions; 

• The Programmar API pre-defines several of the most common 
types of literals. Examples include TerminalLiteralToken, 
TerminalNumberToken, and TerminalPunctuationToken. We 
have found this can save considerable time and effort, since 
specifying and debugging either regular expression or CFG-like 
rules for floating point numbers or string literals can be 
challenging and time-consuming; and 

• The Programmar API also includes special pre-defined terminals 
to ease the task to creating custom definitions for special cases. 
For example, Python has very strict rules for indentation. The 
Programmar API defines a Start-of-line terminal type that can be 
used to handle the indentation logic correctly. 
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2.1 Sample Programmar 
Non-terminals within Programmars are defined using one class for 
each non-terminal. Each of these classes must extend one of several 
abstract non-terminal classes built-in to the Programmar API. As an 
example, consider a traditional grammar for a simple language L as 
shown in Figure 1. 

 <L> ::= <P>+; 
 <P> ::= <X> [<Y>]; 
 <X> ::= 'a' | 'b'; 
 <Y> ::= 'c' | 'd' | 'e'; 

Figure 1: Traditional Grammar  

Figure 1 describes a language made up of single-letter keywords 
delimited by white space (e.g. blanks). A source file consistent with 
Figure 1 consists of one or more instances of the non-terminal P, 
each of which is comprised of a non-terminal X, optionally 
followed immediately by a non-terminal Y. An equivalent 
Programmar class for P is presented in Figure 2. 

public class P extends TokenSequence { 
 public KeywordChoice x  
             = new KeywordChoice("a", "b"); 
 public @OPT KeywordChoice y  
             = new KeywordChoice("c", "d", "e"); 
} 

Figure 2: Programmar Class Example 

The abstract TokenSequence class is built-in to the Programmar 
API, and provides Programmar writers with a convenient way to 
specify sequences of elements. Similarly, the built-in 
KeywordChoice class handles the common need to specify a set of 
keywords that can appear as a given element in a language. The 
notation @OPT is used to specify optional elements. 

Each Programmar requires a top-level class that extends Language, 
such as that shown in Figure 3. The TokenList<> class represents a 
list of one or more elements. 

public class Letters_Program extends Language { 
    public TokenList<P> pList; 
} 

Figure 3: Top-level Programmar Class Example 

The Programmar parsing process creates instances of the types of 
classes shown in Figures 2 and 3. Collectively these instances form 
a PST, which can be stored as an XML file or as Java code that 
regenerates the PST. 

As an example, assume the Programmar provided above is used to 
parse the following text:   a b c 

The Programmar parser generates the XML in Figure 4. PSTs in 
XML form can be used by tools that perform subsequent analysis 
and processing tasks. ("T" means Token, "TT" is Token Type, "N" 
is Name, and "V" is Value.) 

The central idea behind parsing with Programmars is to use 
reflection [14] to fill in the PST with the results of the parsing 
process. Reflection is essentially the ability of the Programmar 
parser to examine Programmar source code and use this knowledge 
to make decisions about how the parse should proceed. The parser 
uses this strategy to infer grammar rules from the Programmar 
classes. This property of Eagle Legacy’s proprietary parser is what 
enables Programmars to be written in a declarative (rather than 
procedural) form. 

Instances are named in the Programmars, which results in named 
PST entries in Figure 4.   This is unlike an AST where elements are 

<Program Language="L" Tokens="7"> 
  <T TT="Letters_Program"> 
    <T N="pList" TT="List"> 
      <T TT="P"> 
        <T N="x" TT="KeywordChoice" V="a"/> 
      </T> 
      <T TT="P"> 
        <T N="x" TT="KeywordChoice" V="b"/> 
        <T N="y" TT="KeywordChoice" V="c"/> 
      </T> 
    </T> 
  </T> 
</Program> 

Figure 4: XML Representation of a PST 

anonymous. This means specific instances can be referred to from 
elsewhere in the Programmar or in associated source code analysis 
programs. This turns out to be extremely valuable when analyzing 
source code. 

The Programmar technique has been used to successfully parse 
millions of lines of code written in dozens of computer 
programming languages such as Assembler, Fortran, PL/I, RPG, 
Java, Visual Basic, Delphi, DOS, SQL, Python, C++, and many 
more. For example, Figure 5 shows a summary of nearly seven 
million lines of successfully parsed industrially-sourced source 
code across multiple projects. This parsing took place during the 
development of the Programmar API, while developing 
Programmars for several widely used languages. The unparsed C 
files are due to missing macro definitions, while the unparsed 
HTML & Javascript files are due to embedded Django.  

2.2 Comparison to Other Tools 
In terms of equivalence with other parsing approaches, the 
Programmar parser uses a top-down approach with no look-ahead 
(i.e., it is an LL(0) grammar [13]). No token pre-processor is 
required.  

The use of a Programmar differs from a Recursive Descent Parser 
(RDP) [13] because Programmars use a declarative way of 
representing computer languages, as described above. Other than 
terminal nodes, there is no logic required in a Programmar. An 
RDP, in contrast, uses programming logic for matching each node 
in the grammar. 

Tools such as ctags, opengrok, lxr, and doxygen (see for example 
[15]) are also used for source code analysis tasks, but serve a 
fundamentally different purpose as compared with a full parsing 
approach such as with Programmars. These tools rely on regular 
expressions to help locate various syntactic elements within source 
code files, which means their expressive power and ability to fully 
parse source code files is quite limited when compared with CFGs, 
let alone in comparison to context-sensitive Programmars. These 
tools cannot provide the complete parsing results required for large-
scale PPSM. 

3. ADDRESSING THE CHALLENGES 
Although Programmars tend to be slightly more verbose than 
CFGs, the Programmar approach is designed to enable faster and 
more cost-effective development of PPSM functionality with a 
reduced likelihood of errors in the results. This is accomplished by 
addressing the challenges discussed in Section 1.1 as follows. A 
similar project approach as described above is assumed. One team 
of developers is responsible for Programmar development, which 
typically involves updates to the Programmars throughout a project. 
Other teams write tools to traverse PSTs and perform various 
analysis and processing tasks. 
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Figure 5: Sample Parsing Summary Across Languages 

3.1 Impact of Programmar Changes 
In the Programmar approach, downstream impact of a change to 
any part a Programmar will be detected immediately, because the 
Java Programmar code will be an integral part of any Java tools 
written for downstream processing. The combined code will not 
successfully compile unless and until the tool code is fully 
consistent with the Programmar. If somebody were to change the 
name of an element in a Programmar, all references to that name 
within the tool code would become invalid until they were updated 
to be consistent with the changed element. Each PST has a version 
number embedded within it, so it is possible to detect out-of-date 
PST's. This allows projects to scale to much more significant 
levels. It is now possible to have dozens of developers working on 
the same project, processing many computer languages, with much 
reduced impact of effort and time delays associated with 
downstream detection of PST structure changes. This addresses the 
concerns described in Sections 1.1.1, 1.1.2, and 1.1.3. 

3.2 Facilitating Cross References 
As mentioned in Section 1.1.4, ASTs document references from 
one program element to another by naming the element. For 
example, an AST node for a procedure call merely names the 
procedure. There is no further information attached to it. If you 
write a tool to analyze or transform such procedure calls, you will 
have to search the rest of the AST to find out what is in that 
procedure. With the PST version, the procedure call instance 
contains within it a reference to the actual definition of that called 
procedure, including all of its parameters, return type, statements, 
etc. This greatly simplifies the task of writing analysis and 
conversion tools. Some of the work in connecting references to 
definitions is accomplished as part of the parsing process, which 
lessens the effort required to create tools for subsequent processing 
tasks. This addresses the concerns described in Section 1.1.4. 

3.3 Multiple Languages Concurrently 
Some computer languages, such as HTML for web pages, include 
other languages inside of them, such as Javascript, CSS or PHP in 
the case of HTML. Using CFGs, options include (a) attempting to 
separate and parse the languages separately (which is far from 
ideal), or (b) creating a complex, monolithic CFG covering all sub-
languages. A Programmar can draw upon the expressive powers of 
Java. With Java encapsulation, the main Programmar (e.g. HTML) 
can simply reference other Programmars (e.g. Javascript). This 
addresses the concerns discussed in Section 1.1.5. 

Additional advantages arise when considering multiple 
programming languages that include similarities, or those for which 
multiple language variants exist. A traditional CFG is typically 
built to describe just one programming language. With the 
Programmar approach, the components common to all variations of 
a particular programming language can be placed into an abstract 
Programmar class. For example, there are major variations of 
languages like RPG. A File specification has the same meaning 
across each variation, so an abstract RPGFile class can be used to 
define the common elements. The minor syntactic differences 
between RPG variations can then be represented by concrete 
classes that extend the abstract class. 

Variations on a computer programming language can also be 
handled using inheritance. For example, there are both fixed width 
(80 column) and free-format COBOL programs. Their meanings 
are virtually identical, but the syntax is different. With a traditional 
grammar, the whole grammar might be copied and edited for each 
variation. With Programmar inheritance, only the local changes 
need to be considered and the rest can be inherited from the main 
Programmar. 

3.4 Context-Sensitive Processing 
Any Java method written to parse a particular type of terminal node 
has access to the current context in which an instance of that 
terminal is encountered within the source code being parsed. This 
Java method can examine any information relevant to 
understanding the correct meaning of that terminal. For example, a 
COBOL level number can be correctly interpreted by examining 
preceding level numbers in the partially completed PST. When 
parsing a Java program that involves method overriding or 
overloading, method calls can be resolved during parsing by 
examining and comparing arguments and parameters. This enables 
method call nodes within the resultant PST to include references to 
the appropriate method definitions. This addresses the concerns 
discussed in Section 1.1.6. 

20



3.5 Enabling Shared Processing 
Most terminal nodes are somewhat similar across programming 
languages. Generic processors for numbers, literal strings, 
punctuation, etc. are all made available by the Programmar API to 
use when writing Programmars. For example, parsing functionality 
for hexadecimal (hex, base 16) numbers can generally be 
implemented in just a few lines of Java by extending the generic 
hex number processor, and simply declaring their hex prefix or 
suffix. Comments, floating point numbers and string literals are 
simpler to implement in a Programmar than a traditional grammar, 
because they can utilize the built-in generic methods. An abstract 
Syntax class aids in managing the nuances of programming 
languages, such as case sensitivity and line continuations. An 
abstract Project class helps to decide which files to process, how to 
identify languages, how to override base Programmar classes, and 
other related functionality. 

4. A FRAMEWORK FOR THE FUTURE 
One goal of our research is to provide building blocks so 
organizations can perform effective large-scale PPSM. Figure 6 
shows the hierarchy of functionality involved in achieving this 
goal. 

 
Figure 6: A PPSM Framework 

 

4.1 Level 1: Parse 
At the tip of the pyramid in level 1 is the ability to parse large-scale 
software repositories, thus creating an accurate, complete, detailed, 
up-to-date, and searchable understanding of an organization’s 
source code. The Programmar approach provides this information 
in the form of PSTs. 

We have developed a Programmar parser that produces PSTs as 
well as tracing output parsing process, both in plain text and html. 
This is available as an API for parsing programs over the web. 
Other functionality directly related to the parsing level in Figure 6 
that has already been developed includes: 

• Sample Programmars for a wide variety of modern and legacy 
programming languages, which have been used to successfully 
parse millions of lines of source code in those languages; 

• A parsing progress monitor that shows what percentage of 
source code files were successfully parsed, details about any 
failed parsing attempts, as well as a variety of statistics for 
successfully parsed files such as number of lines, size of the 

resulting parse output, frequency counts showing how many 
instances of each Programmar rule were identified, etc.; 

• Given a Programmar, a generator to automatically create an 
equivalent context free grammar. Note that full equivalence is 
not possible in cases where the Programmar performs context-
sensitive processing. Also, terminal nodes defined in a 
Programmar are not converted by this tool; 

• A pretty printer to regenerate a version of the original program 
from the PST, but in a canonical form. Indentation can be fixed, 
extra spaces eliminated, capitalization standardized, etc. 
Programmar element annotations are available to assist with the 
output formatting, such as @NEWLINE, @NOSPACE, 
@INDENT, and @OUTDENT; 

• A program inspector that generates an html report for a parsed 
program, with color codes for all the different kinds of terminal 
nodes; 

• A visual debugger for Programmars with commands like Step-in, 
Step-over, and Continue; and 

• A macro processor for languages like C, PL/I and COBOL. 
Generally, not all macros need to be expanded, so controls are 
available to choose which macros to expand and which to leave 
intact. 

4.2 Level 2: Analyze 
Level 2 in Figure 6 includes a wide variety of functionality to 
extract various types of useful information from an organization’s 
software holdings. Examples include but are certainly not limited to 
the following, all of which make direct use of PSTs: 

• Fundamental to most analysis tools is a strongly connected 
network of references and definitions. For example, we have 
begun work on tools to connect variable references to their 
definitions. Such references can be within a single source code 
file, might span multiple such files, or can even be between 
multiple programming languages. Some languages include 
features like reflection and runtime compilation that complicate 
the process of identifying connections between program 
elements, so in some cases analysis tools must be capable of 
marking references as indeterminate; 

• Using program-specific information to feed into various types of 
application documentation, such as user manuals and technical 
documentation; 

• Extraction of various types of source code metrics, such as 
complexity or quality measurements; and 

• Development of software search / query dashboards to enable IT 
workers to ask questions such as the following: 
o Where are the most exceptions being thrown? 
o Where is the most CPU time spent? 
o Which applications are never (or rarely) used? 
o Where do we have obsolete or deprecated code? 

Beyond the parsing level, we recognize that much of the 
functionality in level 2 and onward in Figure 6 is likely to be 
organization-specific. Thus our strategy is to provide as much 
functionality as possible in an open source format to the 
community at large. This is already in place for sample 
Programmars at github.com/oharasteve/eagle. Eagle Legacy will 
provide an initial set of Programmars for commonly used languages 
and hope the community at large will create new Programmars, 
modify existing Programmars, and build associated PPSM tools as 
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organization-specific projects proceed. It is anticipated that there 
will be language-specific champions in the open source community 
who will monitor and control Programmar changes for consistency 
and accuracy. 

4.3 Level 3: Change 
Level 3 represents tasks that make updates to application software, 
including: 

• Software maintenance updates, whether for correcting 
discovered problems, adding desired functionality, adapting to 
different environments, improving software quality, or proactive 
changes to prevent potential future issues. Any of these forms of 
software maintenance can be enhanced by having a thorough and 
up-to-date understanding of the source code as provided by 
levels 1 and 2; and 

• Transforming software to meet new needs, which might mean 
changing to a different set of programming languages and/or a 
new technology stack, or changes to achieve consistency with 
programming or architectural standards. Examples include 
migrating from COBOL to Java or from a siloed application to a 
service-oriented architecture. Our experience with Automation-
Enabled Modernization (AEM) shows the value of information 
from levels 1 and 2 in performing such transformations [8]. 

4.4 Level 4: Decide 
Level 4 represents decision making processes such as effort / cost 
estimation and cost / benefit analysis for software projects, project 
planning, proposal development, and choosing between options 
(e.g. how to integrate software holdings following a corporate 
acquisition). Such processes are highly complex and do not usually 
make direct use of parsing results. There is, however, often a 
residual impact. For example, project planning relies on effort 
estimates, which are typically more accurate when based on up-to-
date software metrics and other information obtained via level 2. 

It is our vision that efforts at all four levels across a variety of 
organizations will begin to show cumulative effects in the near to 
medium future. We anticipate widespread recognition that PPSM 
poses challenges different from those that organizations face when 
developing software to begin with. With that in mind, it makes 
sense that programming languages as well as their development and 
runtime environments could be designed with the effectiveness of 
PPSM in mind. Imagine new releases of Java or .NET with vendor-
supplied Programmars provided as an integral part of the release.  

5. CONCLUSION 
This paper outlines how the Programmar approach addresses 
current challenges with post-production large-scale software 
management and paves the way for an industry-wide solution to 
evolve via the open source community. Our ultimate goal is to 
grow to support organizations with ultra-large-scale software 
holdings likely to be in the billion lines-of-code range, such as the 
US government, the US military, Apple, Google, Microsoft, 
Yahoo, and others. These organizations face particular challenges 
due to the size and complexity of their software. In such 
environments we have observed the following: 

• The people who created the software to be managed are often no 
longer available. Large organizations tend to see significant staff 
mobility and turnover. This underscores the importance of 
effective software management capabilities; and 

• Quite a variety of different operating systems, databases, 
programming languages, and other technology stack components 
tend to be in the mix. This requires large organizations to build 
bridges between applications created with different technologies, 
which means overall complexity increases at an incredible rate. 
The PPSM challenges are increased significantly. 

These factors tie in directly to the challenges posed with CFG-
based software processing as described in Section 1.1, as well as 
the advantages offered by the Programmar approach as described in 
Section 3. We are highly optimistic that the Programmar approach 
will enable organizations with millions and even billions of lines of 
source code to more effectively manage their software. 
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