Modernizing Parsing Tools

Parsing and Analysis with Object-Oriented Programming

Steven O’Hara
Rocky Slavin

steven.ohara@utsa.edu
rocky.slavin@utsa.edu
Department of Computer Science
University of Texas at San Antonio
United States

Abstract

Software Engineering tools today are hampered by weak-
nesses in parsing and analysis tools. For example, there are
no standard repositories of grammars for the most popular
programming languages. If an organization has software
written in Python, Java, Bash, SQL, HTML, CSS, JavaScript
and so on, there is no readily available mechanism to parse
and analyze all of the software in a unified manner. This pa-
per describes a collection of tools for parsing and analyzing
many different languages, including legacy languages like
COBOL and Fortran. The primary goal is scalability; dealing
with a single programming language and a limited number
of programs is far simpler than dealing with millions of lines
of code written in many different languages.

CCS Concepts -« Software and its engineering — Soft-
ware notations and tools.

Keywords software analysis, parsers, modernization

ACM Reference Format:

Steven O’Hara and Rocky Slavin. 2019. Modernizing Parsing Tools:
Parsing and Analysis with Object-Oriented Programming. In Pro-
ceedings of the 8th ACM SIGPLAN International Workshop on the
State Of the Art in Program Analysis (SOAP ’19), June 22, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 6 pages. https://
doi.org/10.1145/3315568.3329967

1 Introduction

Parsing tools like yacc[8] and ANTLR[16] have been widely
used but they depend on grammars which have not been
standardized and published for general purpose use. There

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6720-2/19/06...$15.00
https://doi.org/10.1145/3315568.3329967

20

is an expectation that each organization will create or adapt
grammars for the languages they use. Many are available for
various languages such as for Python! and COBOL?, but they
use different style grammars and generate language-specific
structures.

The purpose of this research is to identify techniques such
that all programming languages can be parsed using a single
parser, and that the resulting parse trees are written in a
consistent manner. In addition to the parser, we provide a
collection of tools for more robust analysis. For example, all
identifier definitions and references are stored in a language
independent manner. Likewise, most terminal nodes (num-
bers, strings, punctuation, keywords, etc) are processed by
shared libraries.

The core parser described in this paper, first introduced
in [13], is compared to popular parsers based on LALR and
LL(*) style parsers. Since our system uses recursive descent
to parse, it is similar to LL(*) parsers such as ANTLR. There
are two major differences between our system and tradi-
tional parsers. First, we use Reflection to infer the grammar
from Java classes and fields, rather than a text file. Second,
rather than generate parse output as a text file, we generate
instances of Java classes, using the identical classes that were
used for parsing.

Scalability is the focus of our approach. We are designing
a collection of tools to enable the consistent analysis of ma-
jor repositories of software. All of the tools we discuss are
designed to handle many millions of lines of code, written
in a multitude of languages. Tools like debuggers, tracers,
dashboards, etc. are all described.

The majority of our work will be made open-source. In
particular, all the Program Grammars will be modifiable by
the community, with moderator supervision. The central
parser itself has been patented[15].

The long range goal in this effort is exemplified by [12],
which discusses the benefits that are available when gram-
mars and analysis tools become standardized to the point
that software can be reliably modified dynamically without
human intervention. For example, migration of language

Ihttps://docs.python.org/3/reference/grammar.html
Zhttps://open-cobol.sourceforge.io/guides/grammar.pdf

https://doi.org/10.1145/3315568.3329967
https://doi.org/10.1145/3315568.3329967
https://doi.org/10.1145/3315568.3329967

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

versions due to deprecated features should be completely
automated.

2 Background and Related Work

There are hundreds of billions of lines of code in use today[17],
many of which are in antiquated languages such as COBOL,
RPG and Natural. The original developers are unlikely to
still be available to maintain these systems and it is difficult
to find or train legacy programmers. Likewise, there is an
on-going proliferation of languages, both general purpose
and domain-specific[10]. The technologies presented here
are equally applicable to modern programming languages,
which continue to evolve as well.

To get enterprise-wide analyses in such environments
requires spanning both legacy and modern systems. The
following describes the state of the art for addressing this
issue.

2.1 Parsing Tools

The first step in most software analysis projects is to parse
the source code base. Most current parsers use context-free
grammars, which are less expressive than ours, which sup-
ports context-sensitive grammars.

The two most popular approaches to parsers are Look-
Ahead Left-to-Right (LALR)[5] such as yacc, and LL(*)[3]
such as ANTLR. Our approach is more closely related to
the LL(*) style since both are essentially recursive descent
parsers. Unlike LALR, we do not do any lexical token look-
ahead.

One of the criticisms of LL(*) grammars, including ours, is
the inability to handle left-recursive grammars, such as “expr
c:= expr '+' expr | expr '-' expr;”. However, it is
our assessment that this normally happens while processing
expressions, so we provide a specialized parser that allows
expressions to be easily specified and greatly simplifies the
precedence of operators. For example, the additive operators
in JavaScript are shown in Listing 1.

Steven O’Hara and Rocky Slavin

program. For example, the additionExp node (in Listing 2)
in an AST might contain three child nodes, two multiplyExp
nodes and a ’+’ literal, to represent an addition operation.
Given an additionExp node, the child nodes can be examined
to determine the operator and operands. Observe that all
nodes are essentially anonymous - they are identifiable by
type and value, not name.

1 eval : additionExp ;

2

3 additionExp : multiplyExp ('+' multiplyExp |
4 '-' multiplyExp)* ;
5 multiplyExp : atomExp ('*' atomExp |

6 '/' atomExp)* ;

7 atomExp : Number | '(' additionExp ')' ;

8

9

0

1

Number : ('0'..'9')+ ('.' ('@'..'9')+)? ;

WS = (" " | '\Nt'" | '\r'| '\n"') {$channel=HIDDEN;} ;

1 public class JS_AddExpr extends PrecOperator

2 {

3 public JS_Expr left = new JS_Expr(Prec.ATLEAST);
4 public JS_Punct operator = new JS_Punct("+", "-");
5 public JS_Expr right = new JS_Expr(Prec.HIGHER);
6 %}

Listing 1. Simplified JavaScript Additive Expression

The crucial piece is the Prec. ATLEAST parameter. This means
the “left” part cannot have a higher precedence (e.g., multi-
plication).
Listing 2 shows an example of a trivial ANTLR grammar®.
The typical output from existing tools is called an Abstract
Syntax Tree (AST). It is a data structure that contains syntac-
tic details about all the tokens found in the original computer

3stackoverflow.com/questions/1931307/antlr-is-there-a-simple-example
(condensed)

Listing 2. Sample ANTLR Grammar Excerpt

Rather than an AST, we produce a Programmar Semantic
Tree (PST). It is an instance of a Java class, rather than a
syntax tree. It also contains syntactic details about all the
tokens in the original computer program. However, all those
details are stored as instances of other objects, rather than
just as anonymous nodes in a tree. For example, given an
instance of JS_AddExpr called expr, the operands are expr.left
and expr.right (in Listing 1).

Interestingly, the PST (output from the Parser) is stored
in precisely the same classes as our grammars (input to the
Parser).

2.2 LLVM Compiler Infrastructure

The LLVM Project is a collection of modular and reusable
compiler and toolchain technologies[1]. It contains a very
wide array of tools focused on parsing, compiling and opti-
mizing many different programming languages.

Our research efforts are ultimately intended to assist with
programming language modernization, converting old soft-
ware to new languages. We intend to do software analysis
even in the absence of appropriate compilers and interpreters,
and we also process non-traditional languages such as bash,
sql and html. There are many areas of shared interest, so we
anticipate collaboration in the near future.

2.3 Shared Language Grammars

The lack of standard grammars has made it difficult to tackle
modernization problems. Analysis tools depend directly on
the parse tree, which depends on the grammar used. If two
researchers use different grammars, their analysis tools will
probably be incompatible.

Furthermore, the grammars are typically written as text
files while the tools are written in a programming language
such as C++ or Java. Given the semantic gap between text
and code, changes made to the textual grammar are difficult

Modernizing Parsing Tools

to detect in the corresponding tools. Moreover, grammars
are usually under continuous change to accommodate new
source code, as well as possible new versions of the language
itself, so the two can become out-of-sync with no easy way
to enforce consistency.

To address these issues, our system uses Java classes to
represent language grammars. We use the term Program
Grammar, or Programmar, to indicate that the grammars are
themselves represented with Java classes and fields, rather
than text.

Our intention is to open source all Programmars and to
provide mechanisms for the community to maintain and en-
hance the library of Programmars in an open and organized
manner.

3 Approach

Dealing with traditional grammars suffers from scalability
issues. Changes to the grammar, typically written in a varia-
tion of Backus-Naur Form (BNF), can be made without the
corresponding changes to the analysis tools. This often inval-
idates the analysis tools with no warning. Notable exceptions
are systems like Rascal[9] and Stratego[2], which use pat-
tern matching on the language directly, without relying on
the grammar. Likewise, dealing with abstract syntax trees
is often tedious because there is no structure other than a
searchable tree.

Our approach offers several advantages. First, all changes
to the grammars that impact analysis tools will be detected
by the Java compiler because the grammar and the tools are
both written in Java®. Second, the output is a collection of
Java objects with named fields, called a Programmar Seman-
tic Tree, rather than an AST. Third, the grammars are able
to exploit Java language features such as inheritance and
encapsulation. We implement different versions of Python
or COBOL grammars by inheritance and implementing ab-
stract classes. Allowing JavaScript or CSS inside an HTML
program is easily managed with encapsulation.

We assume that our primary user base is capable of writ-
ing simple Java classes that contain little or no logic, just
data fields. Based on the previous work in [13], we are us-
ing Java Reflection[6] to represent the grammars for each
programming language.

3.1 Equivalence to Traditional BNF Grammars

In this section we show how the main elements in a tradi-
tional grammar are represented in a Programmar.

Note that this applies to non-terminal nodes, because
terminal nodes are handled directly in Java code. See sec-
tion 3.1.2 for motivation.

4The approach is not limited to Java and could be applied to other object-
oriented languages (e.g., C# or Python)

22

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

3.1.1 Non-terminal Nodes

A fundamental decision made was to store grammars as
ordinary Java code, not as text files. Here we show a map-
ping between the elements found in a traditional grammar
and some abstract Java classes. For example, compare List-
ing 3 with Listing 4. Although this approach is a little more
verbose, it has a collection of advantages, as described in
Section 3.3. Dealing with the old AST’s was like reading XML
documents, i.e., using an XPath-like expression to navigate
and find the element needed. With the new PST, elements
are referenced by name, and because they are in Java classes,
auto-completion is available to see the available names.

1 cPerform ::= "PERFORM" cParagraph

2 [("THROUGH" | "THRU") cParagraph] [cPerfTimes];
3 cPerfTimes ::= cExpression "TIMES";

4 cParagraph ::= cldentifier;

5 <cExpression ::= cIdentifier | cNumber;

6 cldentifier ::= clLetter (cLetter | cDigit | "-")*;
7 cNumber ::= cDigit cDigitx*;

8 cletter ::= "A" .. "Z";

9 cDhigit ::= "eo" .. "9";

Listing 3. Simplified COBOL PERFORM Verb (old way)

class COBOL_Perform extends COBOL_AbstractStatement {
COBOL_Keyword PERF = new COBOL_Keyword("PERFORM");
COBOL_Paragraph startPara;
@OPT COBOL_PerformThrough through;
@OPT COBOL_PerformTimes times;
class COBOL_PerformThrough extends TokenSequence {
COBOL_Keyword THRU = new COBOL_Keyword("THRU",
"THROUGH") ;
COBOL_Paragraph endPara;
3}
class COBOL_PerformTimes extends TokenSequence {
COBOL_Expression number;
COBOL_Keyword TIMES = new COBOL_Keyword("TIMES");
3

G WD R OO X U R W -

}

Listing 4. Simplified COBOL PERFORM Verb (new way)

In Listing 4, lines 2-5 are equivalent to lines 1-2 of List-
ing 3. Both give a high-level view of what a (simplified)
PERFORM verb looks like. The class COBOL_PerformThrough
is defined on lines 6-9 and used on line 4. COBOL _Paragraph
and COBOL_Expression are classes defined and used else-
where. COBOL _Keyword is a terminal node, based on standard
library classes. The @OPT annotation means that the current
element is optional. Table 1 provides a direct comparison.

3.1.2 Terminal Nodes

In our system, terminal nodes are implemented directly in
Java code. Generally, this involves calling a shared method.
It is perhaps surprising, to somebody who hasn’t worked on
many traditional grammars, that the terminal nodes are often
quite difficult to define. Listing 5 shows a sample grammar
for a Java floating point number. Limiting the value of the
exponent, for example, is difficult to do, especially if the limit
depends on the float_suffix value.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

Steven O’Hara and Rocky Slavin

BNF Term Eagle Abstract Class | Description

none, can use () | TokenSequence Ordered list of tokens to match. Use @QOPT for optional tokens.

| TokenChooser Alternation. Can match any one of them.

* or + TokenList Sequence of one or more tokens of type T (€OPT to allow none)
[Jor? @OPT annotation Optional element

not available PrecedenceChooser | Handles precedence, such as multiplication before addition.

not available SeparatedList<T,P> | Sequence of elements, separated by punctuation, such as a comma.

Table 1. Comparison of BNF Terms and Eagle Abstract Classes

1 float_literal ::=

2 (digits "." [digits] [exponent 1 [suffix 1)
3 | ¢ "." digits [exponent 1 [suffix])

4 | (digits [exponent] [suffix])

5 digits ::= "0..9" { "0..9" }

6 exponent ::= "e" ["+" | "-"] digits

7 suffix ::= "f" | "d"

Listing 5. Grammar for a Java Floating Point Number

It turns out that terminal nodes are often similar between
languages. String literals generally use single or double quotes,
optionally allow doubled quotes, optionally have an escape
character, etc. Listing 6 shows the implementation of Java
numbers (other than hexadecimal constants). The three pa-
rameters are: hex preﬁx characters, exponent characters, and
suffix characters.

1 public class Java_Number extends TerminalNumberToken {
2 @Override

3 public boolean parse(EagleFileReader lines) {

4 return genericNumber (lines, "x", "Ee", "L1FfDd");
5 3

6 3

Listing 6. Programmar for Java Numbers

3.1.3 Context-Sensitive Grammars

When parsing and analyzing COBOL or PL/], it is easy to
simply accept a level number as a number and just store it
into the AST. We have chosen to structure data records with
level numbers such that they are stored hierarchically, which
significantly simplifies analysis tools.

1 01 WS-DB-LINE.

2 @3 WS-TOP-LNE.

3 05 WS-TCHR PIC X(@1) OCCURS 80.
4 @3 WS-T-LINE REDEFINES WS-TOP-LNE.
5 05 FILLER PIC X(@1).

6 05 WS-H-LINE

7 PIC X(78).

8 05 FILLER PIC X(01).

Listing 7. Sample COBOL Data Showing Level Numbers

Listing 7 shows how the COBOL 05 levels are inside the
03 levels, which are inside the 01 level called WS-DB-LINE.
Parsing Python is difficult to do in a context-free grammar,
without pre-processing to inject markers for line breaks and
indentation. Our system uses context-sensitive parsing to

23

correctly align blocks and sub-blocks of Python code, with
no pre-processing.

Because all Programmars are written in Java, the pars-
ing routines have access to the partially built parse tree in
memory. This provides context-sensitive parsing.

3.1.4 Operator Precedence

Operator precedence is handled by the PrecedenceChooser
class. The @P(n) notation indicates operator precedence. In
this case, it is reversed, i.e. lower precedence numbers are
processed before higher numbers. Listing 8 shows the addi-
tive and multiplicative operators in C.

public @P(320) class C_MultExpr extends PrecOperator

{
public C_Expr left = new C_Expr(this, Prec.ATLEAST);
public C_Punct operator = new C_Punct("x", "/", "%")
public C_Expr right = new C_Expr(this, Prec.HIGHER);

3

[B N I N

public @P(330) class C_AddExpr extends PrecOperator
9 {

public C_Expr left = new C_Expr(this,
public C_Punct operator =
public C_Expr right = new C_Expr(this,

Prec.ATLEAST);
new C_Punct("+", "-=-");
Prec.HIGHER);
13 3}

Listing 8. Some Simplified C Expression Operators

3.2 Handling Multiple Languages

An important goal for our platform is to be able to analyze
as many different programming languages as possible with a
unified framework. This also includes the ability to analyze
embedded languages, like PHP or Javascript in HTML. We
also support variations of each language, such as Python 2.7
versus 3.X.

3.2.1 Standardized Parsers and Analysis Tools

When dealing with multiple languages, analysis tools can be
hampered if the parse results are not stored in a consistent
manner. Control flow and data flow analysis are quite similar
across languages and tools should be written in a language-
neutral way, whenever possible. For this reason, we have
introduced a collection of Java interfaces, such as Abstract
Expression, Abstract Statement, etc. that each language can
implement.

For example, our transformation tool suite is based on the
idea that source languages are much more varied than target

Modernizing Parsing Tools

languages. We shield the transformation process from the
implementation details of the target languages. The same
core transformation logic is used whether the target is Java
or Python or C#, as shown in [14].

3.2.2 Embedded Languages

A typical HTML file can contain Javascript, CSS, PHP or a
number of other languages. PHP is actually layered on top
of Perl. These compound languages are often difficult to deal
with in a traditional BNF-like grammar, but are relatively
simple in a Programmar.

public class HTML_ScriptBody extends TokenChooser {
public @CHOICE @SYNTAX(Django_Syntax.class)
Django_Control django;
public @CHOICE @SYNTAX(Javascript_Syntax.class)
Javascript_Program javascript;

AU A W =

Listing 9. HTML Script Definition (condensed)

Listing 9 shows how Django and Javascript can be embed-
ded within an HTML file. The @SYNTAX notation is crucial
because the syntax for each language is potentially different;
languages differ on case-sensitivity, end-of-line processing,
comments, etc. These syntactic differences are managed via
the abstract EagleSyntax class. It can be compared to a
“lexer”, such as FLEX [11], which is often used with Bison,
except it does not actually read any input characters.

3.2.3 Language Variations

Languages evolve over time. Java, for example, added gener-
ics in 2004 with JDK 1.5. One approach to handling these
enhancements is to add them to the core version of the lan-
guage, even if earlier versions did not support them. With
software analysis, rejecting invalid programs is typically not
important. If a JDK 1.4 Java program used generics, we might
successfully parse it, but it would not compile. This approach
is generally used in our system because it reduces the need
to consider every release separately.

Sometimes, however, the changes are too significant and
require a new language variant. For example, there are both
free-format and fixed-format versions of RPG[7]. Although
they are parsed differently, the core elements are the same
and should be shared. Software analysis tools should still
be able to process both formats without consideration of
syntactic details.

Given two variations of a language, such as Python 2.7
and Python 3.x, it is generally necessary to create two top-
level languages and have a shared abstract class that they
both derive from. Since our system is written in Java, and
runtime information on Generics is erased in Java®, we have
had to resort to solving the “Robot’s Leg” problem using class
replacement. For example, Python 2 has a ’print’ statement,

Shttps://docs.oracle.com/javase/tutorial/java/generics/erasure.html

24

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

but Python 3 does not. It should be parsed as a statement in
Python 2 and as a function in Python 3.

3.3 Scalability

Our system is specifically designed to handle millions of
lines of code spanning thousands of files in dozens of lan-
guages. Accommodating this means having powerful debug-
ging tools, reporting tools, dashboards, logging, etc. Devel-
oping such tools is greatly simplified in our system by using
the same parser for all languages, implementing standard
interfaces (see Section 3.2.1), and by sharing terminal nodes.

3.3.1 Debugging Tools

We have an interactive debugger that supports step-over,
step-into and step-out of a parse-in-progress. This is ex-
tremely useful to monitor the progress of a file that does not
parse correctly.

Figure 1 shows a screen snapshot of our interactive debug-
ger. The core parser is independent of any debugging tools,
so alternative debuggers can be created.

[0) |

IS\COBOL\BestSellers.cbl

[ovon | [_run | _isiopil]|_sisporer] _sopont |[_aun |

‘ Set Break in Source H Clear it H Set Break in Grammar H Clear it |

- | Eagle Debugger

ile VALUE HIGH-VALUES.
PIC X(5).
EER

BIC X

o PIC X(20) VALUE SEACES
02 FILLER PIC X(31)
VALUE "FOLIO SOCIETY BEST SELLERS LIST".

OL_DataFieldName] [COBOL_DataClause]*
1%

COBOL_DataDeclaration)
SECTION™ '.' COBOL CopyOrDataDeclaration*
ction | COBOL_WorkingStorageSection |

n | COBOL ReportSection)

Comment]* [COBOL_Specialliares]
t]* [COBOL DataDivision]

[48/1 - 48/2] Matched: COBOL Level 1

Figure 1. Interactive Debugger

In addition, we have tracing tools that monitor parsing
progress. Since the parser can backtrack and re-parse on
failure, these traces can often be quite lengthy. So we provide
two different forms of tracing, one as a text file, and the other
as an interactive HTML report with controls to open and
close logical blocks of parse steps.

3.3.2 Reporting Tools

We provide a web-based tool for examining overall parse
progress. It includes information about how many files didn’t
parse successfully, as well as information about where and
why they failed. Statistics include parse speed, parse tokens
per line, parse steps per line, etc. Collectively, they provide a
reasonable measure of program complexity (akin to function
points[4]). Figure 2 shows a sample report.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

Additionally, reports are available for each language, in-
cluding a hyper-linked BNF-style grammar, with the count
of each token actually used by the test cases. This can be
especially useful for deciding which language patterns to
transform with automation versus manually.

N Tokens Elapsed Lines Parsing Steps
Language Files Parsed Bytes Lines Tokens I'Line (ms) [Sec Steps I'Line
AWK 22 22 10,934 475 8,194 17.25 629 755 45,701 96.21
CMD 73 73 61,391 1,595 22,959 14.39 733 2475 86,606 3
Cs3 1 1 243 19 113 595 1] 1,017 53.53
HTML 3 3 14,823 217 8,550 39.40 125 1,736 68684 31652
Java 20 20 215,097 6,696 109,000 16.26 3279 2,042 1,389,210 207.47
PHP 42 42 160409 5.360 73.070 1363 7.446 719 3158992 58936
saL 1 1 5,667 142 2,170 1528 1,155 122 7,280 5127
Total (7) 162 162 468,524 14,504 224,056 15.45 13,367 1,085 4,759,490 328.15

Figure 2. Example Project Summary View

3.3.3 Browsing Tools

For statically scoped languages, it is usually possible to con-
nect symbol references with their definitions. Clicking on a
definition shows all the known references, and vice versa.
Syntax highlighting is automatic and controllable by a sup-
plied Cascading Style Sheet (CSS). By default all numeric
terminal nodes show up in red, key words in green, etc,
regardless of programming language.

4 Discussion

A surprising number of benefits showed up with this ap-
proach to parsing and analyzing large scale software reposito-
ries. Encapsulation (Section 3.2.2), inheritance (Section 3.2.3)
and context-sensitive grammars (Section 3.1.3) have already
been described.

Modularity Typical BNF-like grammars are stored in a
single text file. With Programmars, each language definition
is split apart into logical packages and classes. For example,
the Java Programmar is implemented in 46 source files, with
an average of about 45 total lines per file. Java_Subscript,
Java_Class, Java_SwitchStatement, Java_HexNumber are
4 examples of the 46 files.

Maintenance One of the major issues with analysis tools
is when the tools get out of sync with the grammars. When
one change is to a text file (e.g., BNF) and another change is
in software, there may be no obvious indicators. The analysis
tools may just stop matching patterns in the AST. With our
approach, the tools are compiled in the same environment
as the Programmars, which generally prevents them from
getting out of sync.

Testing The tool suite is built in Java, and is well-suited
for unit testing. We use JUnit extensively for testing low-level
functions as well as large-scale functional testing.

Source Code Generation Since the Programmars are
written in Java, we have added formatting annotations, such
as @NEWLINE and @NOSPACE, to the Programmar for code
generation. This is used for both re-formatting code and as
the output from transformation tools.

25

Steven O’Hara and Rocky Slavin

5 Conclusion and Future Work

By providing a large collection of program grammars and
related tools as open source, it is our hope that the commu-
nity can be more successful in analyzing and modernizing
legacy applications, as well as migrating modern languages
to newer revisions. The tools described in this research are
designed for large-scale projects involving as many program-
ming languages as possible.

Active areas of research include cross-language data flow
analysis, abstract data types, and injecting code for dynamic
analysis to observe program behaviors and data value ranges.
We are also researching programming language transforma-
tion on a longer term schedule.

References

[1] [n.d.]. The LLVM Compiler Infrastructure. http://llvm.org. Accessed:
2019-05-02.

[2] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. 2008. Stratego/XT 0.17. A language and toolset for program
transformation. Science of computer programming 72, 1-2 (2008), 52-70.

[3] William H Burge. 1975. Recursive programming techniques. (1975).

[4] Tom DeMarco. 1984. An algorithm for sizing software products. ACM

SIGMETRICS Performance Evaluation Review 12, 2 (1984), 13-22.

Frank DeRemer and Thomas Pennello. 1982. Efficient computation

of LALR (1) look-ahead sets. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS) 4, 4 (1982), 615-649.

Ira R Forman, Nate Forman, and John Vlissides Ibm. 2004. Java reflec-

tion in action. (2004).

Scott Hanson and Jing Li. [n.d.]. Free-form RPG support on IBM i.

https://developer.ibm.com/articles/i-ibmi-rpg-support/. Accessed:

2019-03-09.

Stephen C Johnson et al. 1975. Yacc: Yet another compiler-compiler.

Vol. 32. Bell Laboratories Murray Hill, NJ.

Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. 2009. EASY Meta-

programming with Rascal. In International Summer School on Genera-

(5

—_

[6

—

[7

—

8

—

[9

—

tive and Transformational Techniques in Software Engineering. Springer,
222-289.

[10] Ralf Lammel and Chris Verhoef. 2001. Cracking the 500-language
problem. IEEE software 18, 6 (2001), 78—-88.

[11] John Levine. 2009. Flex & Bison: Text Processing Tools. " O’Reilly Media,
Inc!.

[12] Andrew]J. McAllister and Steven O’Hara. 2016. Toward Effective

Management of Large-Scale Software. In SER&IP.

Steven O’Hara. 2015. Programmars: A Revolution in Computer Lan-

guage Parsing. In SERP, Vol. 15. 125-131.

Steven O’Hara. 2018. Improving Programming Language Transforma-

tion. In Proceedings of the International Conference on Software Engi-

neering Research and Practice (SERP). The Steering Committee of The

World Congress in Computer Science, Computer ..., 129-135.

Steven O’Hara and Jeffrey Allen Wilkinson. 2017. Parser that uses

a reflection technique to build a program semantic tree. US Patent

9,710,243.

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL (*)

parsing: the power of dynamic analysis. ACM SIGPLAN Notices 49, 10

(2014), 579-598.

[17] Brian Robinson. [n.d.]. Cobol remains old standby at agencies de-
spite showing its age. https://fcw.com/articles/2009/07/13/tech-cobol-
turns-50.aspx. Accessed: 2019-03-09.

[13]

[14]

[15]

[16]

http://llvm.org
https://developer.ibm.com/articles/i-ibmi-rpg-support/
https://fcw.com/articles/2009/07/13/tech-cobol-turns-50.aspx
https://fcw.com/articles/2009/07/13/tech-cobol-turns-50.aspx

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Parsing Tools
	2.2 LLVM Compiler Infrastructure
	2.3 Shared Language Grammars

	3 Approach
	3.1 Equivalence to Traditional BNF Grammars
	3.2 Handling Multiple Languages
	3.3 Scalability

	4 Discussion
	5 Conclusion and Future Work
	References

